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Abstract: Structure from motion (SfM) computer vision is a remote sensing method that is gaining popularity due to
its simplicity and ability to accurately characterize site geometry in three dimensions (3D). While many researchers
have demonstrated the potential for SfM to be used with unmanned aerial vehicles (UAVs) to model in three dimensions
various geologic features such as landslides, little is understood how the selection of the UAV platform can affect

the resolution and accuracy of the model. This study evaluates the resolution and accuracy of 3D point cloud models
of a large landslide that occurred in 2013 near Page, Arizona that were developed from various small UAV platform
and camera configurations. Terrestrial laser scans (TLS) were performed at the landslide and were used to establish a
comparative baseline model. Results from the study indicate that point cloud resolution improved by more than 16%
when using multi-rotor UAVs instead of fixed-wing UAVs. However, accuracy of the points in the point cloud model
appear to be independent of the UAV platform, but depend principally on the selected camera and the image resolution.
Additional practical guidance on flying various UAV platforms in challenging field conditions is provided for geologists

and engineers.
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1. Introduction

Interest in and demand for remote sensing using small un-

manned aerial vehicles (SUAVs, or “drones”) is increasing rapidly

throughout the world. With these systems becoming more af-
fordable and user-friendly, sUAV-related research has become
accessible to a wider range of engineers and Earth scientists. In
particular, the fields of civil engineering and engineering geol-
ogy are showing substantial interest in sSUAV-related applica-
tions of remote sensing, infrastructure monitoring, and post-
hazard damage assessment. For example, researchers have ex-
perimented with SUAVs to remotely collect data related to soil
erosion (D’Oleire-Oltmanns et al. 2012; Kaiser et al. 2014),
landslide and rock fall deformations (Gong et al. 2010; Lucieer
et al. 2014; Niethammer et al. 2012; Stumpf et al. 2013; Turner
et al. 2015), traffic monitoring (Coifman et al. 2006; Zhou et al.
2015), road surface distress (Dobson et al. 2013; Zhang and
Elaksher 2012), geological and/or topographical terrain map-
ping (Bemis et al. 2014; Stefanik et al. 2011), coastal moni-
toring (Harwin and Lucieer 2012; Mancini et al. 2013), bridge
monitoring (Metni and Hamel 2007), earthwork and site grad-
ing (Siebert and Teizer 2014), pipeline monitoring (Hausamann
et al. 2005; Rathinam et al. 2008), and levee monitoring (de Al-
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buquerque Nobrega et al. 2013). Some research has been per-
formed with sUAVSs to obtain site data following a major earth-
quake including evaluations of seismically-induced landslide
displacements (Gong et al. 2010), structural transportation dam
age detection (Hu et al. 2012), and post-liquefaction evaluation
of ground deformations (Ledezma 2014).

While some of these cited studies used various remote sens-
ing technologies such as stereo vision (Stefanik et al. 2011)
or synthetic aperture radar (SAR) (de Albuquerque Nébrega
et al. 2013) to collect and analyze their respective datasets,
the majority of the studies applied a remote sensing technique
known as structure from motion (SfM) computer vision (Marr
and Nishihara 1978; Snavely et al. 2008). Continual advances
in digital photography, computer processing capabilities, and
computer vision algorithms have improved the speed and ac-
curacy of SfM computer vision such that median accuracies as
high as 2.5 cm have recently been reported in the literature for
sUAV-based SfM digital terrain models (DTMs) (Harwin and
Lucieer 2012). Even low-cost SUAV platforms carrying very
small and affordable sensors are commonly producing SfM-
based DTMs with accuracies of 0.5-meter or better (Nietham-
mer et al. 2012; Stumpf et al. 2013).

While a DTM accuracy of 0.5-meter might be sufficient for
many engineering and science applications, it may not be suf-
ficient for other applications that require higher accuracy. For
example, detection of post-earthquake liquefaction ground de-
formations might require horizontal model accuracies within
10 cm and vertical model accuracies within 1 cm to be of
use to the engineering community. Experts in the field of re-
mote sensing generally understand that various methods can
be employed to improve resolution and/or accuracy of SfM 3D
reconstructions including the use of a higher-quality camera
and/or computer workstation for SfM processing, increasing



the number of pixels per surface area in each digital image,
incorporating GPS and/or telemetry metadata with the digital
images, and/or incorporating surveyed ground control points in
the SfM workflow. However, the selection of a particular cam-
era and how it is maneuvered at a given site depends largely
upon the capabilities of the sUAV platform that is being used.
Unfortunately, practical guidance on how different sUAV plat-
form/sensor combinations can affect the final resolution, accu-
racy, and visual quality of a SfM 3D reconstruction is not read-
ily available to engineers and scientists. Furthermore, studies
reported in the literature such as those cited above rarely ad-
dress this lack of guidance because they tend to collect their re-
spective datasets using a single preferred sUAV platform/sensor
combination. As a result, some scientists and engineers might
be left wondering which sUAV platform/sensor combination
would be best suited for a particular monitoring or research ap-
plication. Even worse, some engineers and scientists who are
unfamiliar with the challenges and/or practical limitations as-
sociated SfM-based remote sensing from an sUAV might adopt
the philosophy that selection of an sSUAV platform/sensor com-
bination is inconsequential. These professionals might subse-
quently base the selection of a platform/sensor combination
on other factors such as advertised automated flight function-
alities, size/portability, perceived convenience, and/or cost in-
stead of the desired final quality, resolution, and/or accuracy of
the SfM 3D reconstruction.

Given the general lack of guidance in the literature for en-
gineers and scientists regarding the selection of a SUAV plat-
form/sensor combination, the objectives of this study were to:
(1) assess how different sUAV platform/sensor combinations
would affect the final resolution, accuracy, and visual qual-
ity of an sUAV-based SfM 3D reconstruction and (2) provide
practical guidance to engineers and scientists desiring to ac-
quire a sUAV platform/sensor combination for remote sens-
ing field applications. To perform this study, three sUAV plat-
form/sensor combinations were selected and tested at a field
site to evaluate two questions: (1) “Does the selection of the
optical sensor matter?” and (2) “Does the selection of the SUAV
platform type matter?” Two of the selected SUAV platforms
represented different multi-rotor types, but that were capable
of carrying different-sized optical sensors. Two of the selected
SsUAV platforms carried the same small optical sensor, but rep-
resented platform types that fly in a different manner (i.e., multi-
rotor versus fixed wing flight). The selected field site for this
study was a large landslide that occurred in 2013 in the State
of Arizona in the United States and that severely damaged a
major highway. This landslide was selected for the study be-
cause of its unique interest to both civil engineers and earth
scientists, and because sufficient measurements and controls
were already in place at the time of the study so as to provide
a meaningful baseline for the SfM model comparisons.

2. Study Area

On February 20, 2013, approximately 32 km south of Page,
Arizona, US Highway 89 (US-89) experienced landslide move-
ment that displaced nearly 150 meters of travel lanes (Mc-
Cormick and Richmond 2013). Vertical scarp displacements
of nearly two meters were observed in the travel lanes. The
landslide failure surface extended through the road and down

through the entire hillside (see Figure 1). The highway was im-
mediately closed following the landslide, and geotechnical en-
gineers and geologists were brought on-site to assess the dam-
age of the natural disaster, to monitor any continuing move-
ments of the slide, and to propose mitigation solutions.

Fig. 1. sUAV photograph of the US-89 Arizona landslide that
occurred on February 20, 2013.

According to Kleinfelder (McCormick and Richmond 2013),
the landslide was a reactivated portion of a larger, ancient trans-
lational (i.e., planar) landslide. The active landslide is up to ap-
proximately 41 m deep below the roadway and measures ap-
proximately 370 m long at the base (toe) of the slope. The an-
cient landslide is approximately 91 m deep and up to 760 m
wide (as measured longitudinally along the US-89 highway).
While many slope failures are associated with the presence of
water, no evidence of groundwater seepage was identified in
any of the subsurface explorations. It was therefore concluded
that the 2013 landslide occurred under dry conditions due to
long-term slope creep and slow but continual erosion at the
base of the slope. Kleinfelder suggested that the slope would
continue to move if action was not taken to mitigate the land-
side, and proposed that the most feasible mitigation option was
the construction of a gravity buttress at the base of the land-
slide slope, and the realignment of the highway travel lanes
further back into the rock slope through the creation of a new
back cut. This concept would move the highway away from
the headscarp of the landslide and would provide the needed
fill materials to construct the buttress at the base of the slope.
The State of Arizona proceeded to implement the geotechnical
engineering recommendations of Kleinfelder (McCormick and
Richmond 2013) in summer 2014, completing the construction
in 2015.

3. Methods

This study compares a baseline terrestrial laser scan (TLS)
model of the US-89 landslide with corresponding SfM com-
puter vision models developed from digital photographs taken
with three different SUAV platform/sensor combinations. The
photographs and laser scans were captured during the same
two-day period during July 2014 that the TLS scans were per-
formed at the landslide site. The sUAV platform/sensor com-
binations used in this study were carefully selected to repre-
sent generic types of sUAV platform/sensor combinations that
are commercially available to engineers and scientists and are
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commonly used. This section describes how these sUAV plat-
forms were selected and operated, how the digital images were
collected with the selected sensors, and the SfTM workflow with
which those images were processed to develop 3D reconstruc-
tions of the landslide. This section also describes the collection
of the TLS data used as the basis for model comparisons (i.e.,
ground truth) in this study.

3.1. Selected sUAV Platforms

For this study, three platforms were selected to represent
three generic types of SUAV platforms that are currently popu-
lar with engineers and scientists. Consideration was given to
select: (1) two of the three platform types that had similar
flight capabilities, but that could carry different optical sen-
sors, and (2) two of the three platform types that could carry
the same optical sensor, but that had different flight capabili-
ties. The selected sUAV platforms included a heavy-lift hexro-
tor platform, a small quadrotor platform, and a fixed wing plat-
form. Photographs of the selected sUAV platform/sensor com-
binations used in this study are presented in Fig. 2, and se-
lect technical specifications for the three sUAV platforms are
provided in Table 1. A single rotor SUAV platform (i.e., he-
licopter) was not selected for use in this particular study be-
cause such platforms are not as widely used as multi-rotor
platforms, possibly due to the increased difficulty in piloting
them. We also felt that the image sets collected from the heavy-
lift multi-rotor/DSLR combination would closely resemble the
image sets that would be collected from a heavy-lift single-
rotor sUAV platform. However, as will be discussed below,
the selection of a single-rotor heavy-lift sUAV platform would
likely have overcome some of the environmental difficulties
that were eventually encountered at the desert landslide.

In practice, each individual SUAV platform will have its own
unique automation/navigation features, payload/duration char-
acteristics, and customizable upgrade options. Engineers and
scientists should carefully evaluate each sUAV platform and
its capabilities before purchasing to ensure that it will provide
all of the necessary and/or desired features for its intended mis-
sion(s) (Coopmans 2014; Stark et al. 2012).

Fig. 2. Photographs of the three different SUAV platforms
used in this study.

(¢) Ritewing™ Flying Wing

3.2. sUAV Flight Patterns
Each of the three selected sUAV platform/sensor combina-
tions was flown manually over the US-89 landslide for suffi-

cient duration to collect approximately 600 aerial digital pho-
tographs of the landslide, excluding images captured during
take-off and landing. Because the average flight time per bat-
tery charge on each sUAV used in this study was about 12
minutes, each SUAV was flown three times to ensure adequate
aerial coverage and image overlap at the landslide. For the
study, all sUAV platforms were manually piloted using first
person view (FPV) navigation technology, and line-of-sight vi-
sion of the sSUAV was maintained at all times. A spotter assisted
the sUAV operator as needed.

The flight path implemented for all three SUAV platforms
followed a systematic back-and-forth pattern at elevations of
10, 30, 60, and 120 meters above the landslide. The purpose of
this flight pattern was to collect numerous images from mul-
tiple viewing angles and elevations to improve image overlap
and resolution, resulting in improved quality of the 3D recon-
structions. These photos had a side overlap that ranged from
70% to 90% depending on the elevation of the pass and front
to back overlap greater than 80% for each of the platforms. In
total, each sSUAV collected optical data from the air for approx-
imately 36 minutes over the landslide.

Afternoon desert winds and temperatures exceeding 43° Cel-
sius (i.e., 110° Fahrenheit) caused hexarotor platform to mal-
function and fly poorly, elevating the risk of a crash. Specif-
ically, the Electronic Speed Control (ESC) was overheating.
At temperatures above 145° Fahrenheit, the ESC would shut
down to prevent a fire. On the other hand, the flying wing plat-
form was minimally impacted by the wind and the tempera-
tures. As a result, all multi-rotor sSUAV flights were performed
in the morning hours before 10:30am, resulting in some un-
desired shadows in the digital photographs. However, the STM
workflow that was incorporated did not seem to be adversely
impacted by the shadows in the photographs, as will be sub-
sequently shown in the model results. Furthermore, this obser-
vation of poor multi-rotor sSUAV platform performance in high
winds and/or elevated temperatures effectively illustrates the
importance of selecting an sUAV platform that is capable of
performing its remote sensing mission(s) in the intended en-
vironment. In hindsight, use of a heavy-lift single-rotor sSUAV
platform would have likely been a better choice for this par-
ticular study if a sufficiently skilled pilot could be found be-
cause the large polar moment of inertia of a single spinning
rotor would have caused the platform to have much more sta-
bility in the afternoon desert winds. However, this solution is
impractical on a large scale due to the difficulties of piloting a
single rotor UAV. A larger heavy lift multirotor platform with
installed cooling systems would be a more feasible solution to
overcome the desert winds.

3.3. Selected Sensors

Because sUAVs generally have relatively small payload ca-
pacities, one of the most important considerations in selecting
onboard sensors is weight. In addition to the weight of the sen-
sor itself, engineers and scientists must also account for the
weight of the stabilizing gimbal (if any) and power supply.
Thus, smaller UAVs are generally limited to lightweight (i.e.,
< 700 grams) compact sensors. A heavy-lift multi-rotor sUAV
generally has a much larger payload capacity (i.e., > 3 kg).

Two different optical sensors were used in this study. A GoPro®
Hero 3+ camera was used with both the Quadrotor and the Fly-



Table 1. Selected sUAV platforms for the landslide study and their specifications.

Category Platform l-’ayload Gimbal Max F-light Time
Heavy-lift Hexrotor Aeronavics SkyJib Super-6 Ti-QR 3-5kg 2-Axis 12-15 min
Quadrotor DIJI Phantom™ II 500 g 2-Axis 15-25 min
Flying Wing Ritewing™ 8” Zephyr XL 1-2 kg N/A 20-30 min

ing Wing sUAVs, and a Nikon® D7100 DSLR camera was used
with the Hexrotor sUAV. Each of these sensors and their corre-
sponding settings are briefly described below.

3.3.1. GoPro Hero 3+ Camera

The GoPro Hero series of cameras are lightweight, com-
pact cameras designed for reliable operation in extreme envi-
ronments. The GoPro camera used in this study is capable of
1440p high definition (HD) video (2.7 megapixels (MP)/frame)
at 48 frames per second, as well as capturing still images with
resolutions as large as 12 MP. Because the sensor weighs only
74 grams, it can be easily carried by almost any sUAV platform
that is currently commercially available.

One disadvantage associated with many small sporting cam-
eras such as the GoPro is their use of an ultra-wide angle (or
“fisheye”) lens. Such a lens causes curvature and distortion in
StM 3D reconstruction unless the images are first modified
to correct for wide-angle distortion, or the SfM algorithm is
calibrated to compensate for the distortion during image pro-
cessing. Rather than perform these corrections, a commercially
customized 5.4mm flat lens was fitted to the GoPro Hero 3+
camera used in this study. It was verified that the new lens
had minimal distortion with imagery of lens distortion grids.
The resulting GoPro images produced ground sample distances
(GSDs) shown in Table 2.

Because the GoPro sensor also provided FPV navigation
technology for the sUAV operator in this study, it could not
be used to collect still images without disrupting the opera-
tor’s view. However, 1440p HD video was collected with the
sensor during FPV operation with a shutter speed of 1/48 sec-
onds, with still images later being extracted as part of the SfM
processing workflow. Using extracted video images resulted in
lower image resolutions (~2.76 MP). Nevertheless, these im-
ages were sufficient for performing 3D reconstruction, but pro-
duced lower quality models (as will subsequently be shown).
Because many commercial sUAV platforms that use GoPro
or equivalent sensors incorporate FPV navigation technology
, these lower-resolution images effectively simulate the types
of images that many practicing engineers and scientists might
collect from the field when relying upon FPV to navigate their
sUAV platforms.

3.3.2. Nikon D7100 DSLR Camera

The Nikon D7100 DSLR camera used in this study features
a 23.5 mm by 15.6 mm DX-format sensor capable of captur-
ing images at resolutions of 24.1 MP with an ISO as low as
100. The camera supports GPS tagging of the images, and can
be remotely controlled via a Micro-USB port. The lens used
in this study was a Nikon AF-S Nikor 35mm 1:1.8G. This
lightweight, fixed-focal length lens has a large aperture, and it
does not generate any significant wide-angle or telephoto dis-
tortion. The computed GSDs for the D7100 images are shown
in Table 2.

Still .JPG images at a resolution of 24.1 MP were captured
at a frequency of every 3 seconds. While .RAW image formats
are generally considered preferable for SfM processing due to
reduced noise and compression, .JPG images were used in this
study to be consistent with the GoPro image format and to re-
duce the necessary SfM processing time. All other functions on
the camera were set to their respective “Automatic” settings to
imitate what would most likely be used by engineers and scien-
tists in the field. This resulted in a mean shutter shutter speed
of 1/175 seconds with speeds ranging from 1/125 seconds to
1/320 seconds.

Table 2. Selected cameras GSD at various elevations above the
highway surface ignoring motion effects.

Ground Sample Distance (cm/pixel)

UAV Elevation (m) GoPro Nikon
10 0.51 0.07
30 1.53 0.22
60 3.07 0.45
120 6.13 0.90

3.4. Baseline LiDAR Data

To enable quantification of 3D point cloud accuracy, as well
as meaningful comparisons between different sUAV point clouds,
it was necessary to establish an industry-standard point cloud
to serve as a baseline for the study. A TLS survey was per-
formed at the landslide during the sUAV flights. For redun-
dancy, two separate TLS scanners were used to gather data
from the site: a FARO® Focus®® 130 and a FARO FocusP
330. Both of these scanners are rated for +/-2mm accuracy to
ranges of 130m and 330m, respectively. With the assistance
of professional land surveyors, the TLS scanners were placed
in a series of pre-determined positions designed to promote
maximum coverage of the landslide study area. Several spher-
ical Styrofoam targets with diameters ranging from 150mm to
200mm were placed in the scan vicinity to facilitate object reg-
istration (Mancini et al. 2013; Niethammer et al. 2012; Travel-
letti et al. 2012). In total, 51 separate TLS scans were made
using both scanners. All of the TLS scans of the landslide
required approximately 32 man-hours to complete due to the
steep, boulder-strewn terrain at the site.

Registration of the TLS scans was performed using AutoDesk®
ReCap software (aut), unifying the scans into a single 3D point
cloud model. This model was converted into an .E57 file for-

mat, a compressed format compatible with CloudCompare, v2.6.1

software (Girardeau-Nontaut), which was later used to perform
comparisons between the various 3D point clouds. Overall, the
resulting TLS baseline point cloud provided a resolution of
over 90,400 points per square meter (i.e., one point per square
1.1 mm). An image of the TLS point cloud model is presented
in Figure 3. The shadowing effect caused by concrete highway
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barrier is evident in Figure 3 by the large hole of data (shown
in white) just above the headscarp of the landslide.

Fig. 3. TLS point cloud model of the US-89 landslide.

No ground control points were surveyed or marked as part
of this study because the SUAV-based point cloud models did
not require geo-referencing (i.e., latitude, longitude, elevation)
for comparisons with the TLS baseline point cloud model. Fur-
thermore, the performance of manual site surveys and the es-
tablishment of ground control points are not conducive to many
sUAV-based remote sensing applications, including the mon-
itoring of potentially dangerous geological hazard sites such
as active rock falls or unstable landslides. Finally, the addi-
tion of ground control points would most likely only serve
to improve the accuracy of the SUAV-based point cloud mod-
els. Given these considerations, ground control points were ex-
cluded from this study.

3.5. Standard Boxes

To help ensure model quality, both qualitatively and quan-
titatively, a series of boxes of known dimensions were placed
along the roadway. The smallest box measured 7.6 x 7.6 x 30.5
cm and the largest box was 30.5 x 30.5 x 30.5 cm. The se-
ries of boxes would be constant throughout each dataset and
preserve geometry in 3 dimensions. The boxes could be mea-
sured virtually and compared to true dimensions to check for
model accuracy and help produce a reliable scale factor. Due
to the fact that the analysis software does not function prop-
erly with global coordinates and because GPS GCPs (ground
control points) were not available for this case study, the boxes
served as reference points that could be used for dimensioning
and as anchor points for manual alignment of the point clouds
before iterative closest point (ICP) (Besl and McKay 1992) al-
gorithm could take place. After each model was generated it
was easy to tell how aesthetic and detailed the models were
by looking at the boxes and seeing if geometry was preserved
and if the numbering on the boxes was easily legible. Figure 4
presents an aerial photograph of these boxes and their layout
on the highway pavement.

3.6. Processing

The computer workstation used to perform the SfM model
processing in this study was a customized machine with the
following specifications:

« Intel® Core i7-4770 CPU @ 3.40 GHz
* 32GB DDR Random Access Memory (RAM)

Fig. 4. Aerial photograph of 12 wooden boxes placed along
the highway for reference and comparison.

* nVidia® GeForce GTX 780 Ti graphics card

This computer workstation was adequate to process the mul-
tiple sets of sSUAV-based image to develop the various SfM 3D
reconstructions. The image sets from each sUAV/sensor com-
bination were generally able to be processed within 24 hours.
However, we have observed that most commercial SfM algo-
rithms will utilize all of the computer processing power that is
available, and that the meshing and viewing of large 3D models
is typically best if performed with at least 60 GB of RAM.

3.7. Computer Vision and 3D Reconstruction Workflow

At the time this study was performed, numerous commer-
cial SfM processing software packages were available for li-
censing. A preliminary study was performed with a separate
dataset of 600 images taken of rock outcrops located in Cen-
tral/Eastern Utah to evaluate many of these software packages.
Ultimately, Agisoft® PhotoScan v1.1.6 Professional (Agi) was
selected for this study due to its robustness, reasonable price,
workflow flexibility, and wide use in the academic literature
(Arbués et al. 2012; Kersten and Lindstaedt 2012; Koska and
Kremen 2013; Lucieer et al. 2014; Room and Ahmad 2014;
Trier et al. 2012; Turner et al. 2015). This software made ad-
justments for the minor lens distortions in the photos from the
camera lenses.

For optimal results, PhotoScan requires 60% image over-
lap for horizontal features, and 80% image overlap for vertical
features (Agisoft LLC 2011). Blurred images, reflective sur-
faces, and/or excessive data outside the area of interest can in-
terfere with accurate scene reconstruction. For consistency and
to replicate the likely workflow that an engineer or scientist
would apply if using the software, the recommended workflow
described in the PhotoScan user manual (Agisoft LLC 2011)
was incorporated in this study. This workflow can be summa-
rized as follows:

* Upload Images - Image sets from each sUAV platform
were uploaded to PhotoScan.

» Align Images - The “Align Photos” function in Photo-
Scan was performed with each image set using the fol-
lowing settings:

— Accuracy: High

— Pair Preselection: Disabled



— Point Limit: 4,000,000

During this phase, camera positions and orientations were
back-calculated, and a sparse point cloud was developed.

e Dense Point Cloud Development - The “Build Dense
Cloud” function in PhotoScan was performed next for
each model with the following settings:

— Accuracy: High
— Depth Filtering: Aggressive

* Point Cloud Export - The “Export Points” function in
PhotoScan was then applied with each resulting dense
point cloud, generating a .PLY file that could be ana-
lyzed in the point cloud manipulation software Cloud-
Compare (Girardeau-Nontaut; Tang 2012) and compared
with the TLS point cloud model.

* Point Cloud Scaling - Using objects of known size and
dimensions in the various point cloud models, includ-
ing the measured distances between highway guardrail
posts, the point clouds were scaled to actual dimensions.
This step in the workflow is usually not necessary if
ground control points are incorporated in the field data
collection and the SfM computer vision processing.

4. Results and Discussion

4.1. Quantitative Results

For consistency between the various 3D models, a section
of the landslide that was clearly visible in all 3D models was
used to assess model resolution and accuracy. This selected
section was located at the front-center of the landslide and was
segmented out from each parent model, as shown in Figure 5.
The number of points in each segmented section was divided
by the computed surface area of the section to calculate the
number of points per square meter in the section. To obtain the
ground nearest distance (GND) between points, the resolution
value was inverted, square rooted and multiplied by 100 to ob-
tain results in units of centimeters/point. The GND therefore
represents the average distance (in cm) between points in each
model.

Accuracy assessment between sUAV-based computer vision
point clouds and the TLS point cloud was performed using the
cloud-to-cloud distance computation function of CloudCom-
pare (Girardeau-Nontaut). Using CloudCompare, the selected
sections from each UAV-based point cloud model were aligned
in free space with the corresponding section from the TLS
point cloud model using the ICP algorithm. This algorithm
lined the models up for comparison using the cloud-to-cloud
(C2C) distance function. Although the ICP method will intro-
duce some error into the alignment of the models, this error is
insignificant when compared to the errors from inaccuracies in
the computer vision point clouds. The c2c function computes
the average discrepancy between the points of the two mod-
els in terms of distance (in meters). In addition, the function
also computes the statistical cumulative distribution functions
of the C2C average discrepancies, which are shown in Figure 6.
From these distribution functions, the median C2C discrepan-
cies are approximately 3.3, 13.8, and 13.7 cm for the Hexrotor

Fig. 5. Sections of the point clouds of the US-89 landslide
used to assess model resolution and accuracy. (a) TLS point
cloud, (b) Hexrotor / D7100 point cloud, (c) Quadrotor /
GoPro point cloud, and (d) Flying Wing / GoPro point cloud.

/ D7100, Quadrotor / GoPro, and Flying Wing / GoPro plat-
form/sensor combinations, respectively. Additionally, Table 3
summarizes the resolution and accuracy results (as compared
to the TLS ground truth model), as well as approximate equip-
ment cost and required man-hours for each sUAV/sensor com-
bination evaluated in this study.

Fig. 6. Cumulative distribution plots of the Hexrotor /
D7100, Quadrotor / GoPro, and Flying Wing / GoPro
models’ C2C discrepancies (in meters) as compared to the
TLS ground truth model.
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Color-graduated comparisons of the models, developed us-
ing CloudCompare, are presented in Figures 7 through 9. These
models show the C2C discrepancy (in meters) from each point
to the closest corresponding point on the TLS point cloud.
Each C2C discrepancy value is assigned a color, according to
the legend alongside each graph. From these comparisons, it
can be seen that the Hexrotor / D7100 platform/sensor combi-
nation produced the most resolute and accurate model because
the majority of the model is blue, representing a C2C discrep-
ancy of no more than 10 cm. The Quadrotor / GoPro and Flying
Wing / GoPro combinations each demonstrate similar C2C dis-
crepancies, with the majority of the points falling within 25 cm
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Table 3. Comparison of various slope segment models against TLS ground truth model.

TLS Hexrotor & Quadrotor & Flying Wing &
Nikon D7100 GoPro Hero 3+ GoPro Hero 3+
Resolution (points/m2) 90,417 6,919 99 85
GND (cm/point) 0.11 1.2 10 10.8
Median ICP Accuracy Compared to TLS (cm) N/A 3.3 13.8 13.7
ICP Accuracy Compared to TLS(% within 1 cm of TLS) N/A 9.80% 1.17% 1.96%
ICP Accuracy Compared to TLS(% within 10 cm of TLS) N/A 90% 38% 39%
Equipment Cost (Approx.) $100,000 $9,000 $1,500 $800
Field Collection Man-Hours 32 2 2 2

of the TLS ground truth model. However, it is obvious that the
Flying Wing / GoPro model is less resolute than the Quadro-
tor / GoPro model due to the fewer number of colored points
in the model. Also interesting is the fact that the Flying Wing /
GoPro model demonstrated significantly worse accuracy along
the pavement surface than the other sUAV-based point cloud
models. We suspect that this reduced accuracy along the pave-
ment is due to the image blur from the Flying Wing digital
images. This reduced accuracy along the pavement is very ap-
parent in the results from the wooden boxes.

Fig. 7. C2C discrepancy between the Hexrotor / D7100
model to the TLS ground truth model. Median difference
between the clouds is approximately 3.3 cm.
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Fig. 8. C2C comparison of the Quadrotor / GoPro model to
the TLS ground truth model. Median difference between the
clouds is approximately 13.8 cm.
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Fig. 9. C2C comparison of the Flying Wing / GoPro model
to the TLS ground truth model. Median difference between
the clouds is approximately 13.7 cm.
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4.1.1. Comparison of Standard Boxes

Comparisons of the box portions of the point cloud models
are presented in Figure 10. These comparisons demonstrate the
impact that GND has on model clarity. The TLS ground truth
model, with a GND of 0.11 cm, clearly shows each individ-
ual box. The Hexrotor / D7100 model, with a higher GND of
1.2 cm, also clearly shows the boxes, but is becoming grainier
and more difficult to interpret some of the smaller boxes. The
Quadrotor / GoPro model appears much grainier, and is diffi-
cult to interpret all but the largest of the boxes. Finally, the Fly-
ing Wing / GoPro model appears the grainiest, and it is nearly
impossible to distinguish any of the boxes.

These comparisons with the wooden boxes are better demon-
strated when cross-sections through the boxes from each model
are compared against the dense point cloud from the TLS model,
as demonstrated in Figure 11. The Hexrotor / D7100 model
cross-section of the boxes presented in Figure 11(a) shows the
best representation of depth modeling in this experiment. The
blue line aligns closely with the TLS model with slight distor-
tion occurring at the corners between the road and the boxes.
The Quadrotor / GoPro model cross-section of the boxes pre-
sented in Figure 11(b) shows less precision. The cross-section
from the model seems to touch the tops of the boxes that were
wider than 20 cm horizontally, but did not accurately follow
the outline of the boxes back to the roadway surface. Boxes
that were skinnier than 20 cm horizontally did not seem to be
visible at all in the model. The Flying Wing / GoPro model
cross-section of the boxes presented in Figure 11(c) shows the
least precision of all of the SfM models, with none of the boxes
accurately captured in the model.



Fig. 10. Comparison of 3D point cloud models of the
wooden boxes on the US-89 highway from the (a) TLS, (b)
Hexrotor / D7100, (c) Quadrotor / GoPro, and (d) Flying
Wing / GoPro

Fig. 11. Comparison of 2D cross sections of the wooden
boxes with the ground truth LiDAR on the US-89 highway.
The cross sections are shown as colored lines against the
LiDAR point cloud.
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4.2. Discussion of the Quantitative Results

Much inference can be made by investigating Figures 6-
11 and Table 3. Inspection of the point cloud models of the
wooden boxes in Figure 10 and the corresponding cross-sections
through several of those boxes in Figure 11 reveals that the
Hexrotor / D7100 platform/sensor combination was superior
in both model resolution and accuracy. This can be attributed
to the superior CCD global sensor and higher pixel resolution
of the D7100 DSLR camera, as well as the image stabiliza-
tion technology and improved flight stability of the multi-rotor
sUAV platform. However, there is also a noticeable difference
in the resolution of the boxes between the Flying Wing / GoPro
models and the Quadrotor / GoPro models, as shown in Figures
10 and 11. The Flying Wing / GoPro model has a noticeably
inferior resolution despite the fact that both sUAV platforms
were carrying the same camera and were flying along simi-
lar paths and elevations. Yet, the model accuracies for both
the Flying Wing / GoPro and the Quadrotor / GoPro combi-
nations were nearly identical, as shown in Figure 6, Figures
8-9, and Table 3. Thus, any given point in either the Flying
Wing / GoPro model or the Quadrotor / GoPro model has ap-
proximately the same error in terms of its correct location in
space. However, the Quadrotor / GoPro model has more points
overall, hence a higher resolution than the Flying Wing / Go-
Pro model. The reason that the Flying Wing / GoPro model
has fewer points is likely due to pixel blur in the images from
the higher velocity of the Flying Wing, as well as a lack of on-
board sensor stabilization technology, resulting in an inferior
3D reconstruction.

In terms of the two questions that were initially posed for
this study, these results suggest that camera selection is perhaps
the most important consideration in determining a point cloud
model’s resolution and accuracy. The selection of the sSUAV
platform is also important in two regards. First, the platform
must be capable of carrying the selected camera and any addi-
tional image stabilization technology that is desired. Second,
the platform must be capable of flying in the manner necessary
to collect images of sufficient quality for the desired 3D recon-
struction. sSUAV platforms flying at a higher velocity will have
a greater risk of experiencing pixel blur, which will impact the
resolution of the resulting point cloud model. Flying at higher
elevations will decrease the propensity for pixel blur, but will
also increase the GSD of the images, and subsequently reduce
the resolution of the 3D reconstruction.

4.3. Qualitative Results

The qualitative appearance of a 3D model is very important
for many applications, though it is often difficult to objectively
quantify. For example, excessive gaps and holes in a model that
is otherwise highly accurate can limit the model’s usefulness.
Some applications, such as anomaly detection, virtual visual
inspection, and presentation for marketing or business devel-
opment can actually rely more on qualitative appearance than
on precise model measurements. Therefore, a subjective quali-
tative assessment was performed for each of the 3D reconstruc-
tions developed in this study.

4.3.1. Terrestrial Laser Scan

The TLS model, as presented in Figure 3, effectively dis-
plays the survey area, with very sharp, easy to identify de-
tails. Even the smallest wooden box is reconstructed with well-
defined edges that are easily visible and accurately measurable
in CloudCompare. Vegetation in the TLS model is clearly vis-
ible, with size, shape, color, and some texture of vegetation
generally observable in the model. Road markings and color
variations on rocks are accurately reproduced. However, a sig-
nificant number of “holes” are present in the TLS model due
to the numerous occlusions at the site that limited the line of
sight of the TLS scanners. These holes were estimated to be
7% of the surface area. This was estimated by creating a mesh
of the surface, sampling points from the mesh and then count-
ing the points with a cloud to cloud distance greater than 2
standard deviations more than the average GND of the origi-
nal point cloud. Despite relocating the scanners to 16 different
scan points across the landslide, shadow zones in the model
are still readily abundant. The areas where the scanners could
effectively and safely be placed were limited by the steepness
and ruggedness of the terrain. As a result, many objects in the
model, particularly the mid-sized boulders and bushes, appear
incomplete in the model. While we acknowledge that shadow
zones can generally be overcome by operating the TLS from
more positions, such effort can dramatically increase the time
and costs associated with data collection.

4.3.2. Hexrotor / D7100 Model

An image of the Hexrotor / D7100 point cloud model is pre-
sented in Figure 12. The model shows very good qualitative re-
sults. Size, geometry, and color are all clearly distinguishable
on most objects in the model. Not many holes or incomplete
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objects are visible. The holes in this model were estimated to
be 0.5% of the model surface area. Significantly better than the
7% for the TLS model. The relatively high density of points
in the point cloud allows for high-resolution model detail and
clear object interpretation without need of additional meshing
or texturing. All of the wooden boxes are visible and distinct,
although their geometry is heavily rounded at the corners and
edges, as was shown in Figure 11. Vegetation is generally vis-
ible in the model, and size and color can be estimated rela-
tively easily. However, texture of the vegetation is neither clear
nor definable, and the geometry of the vegetation produces a
curved and blended appearance. Road markings and color vari-
ations on rocks are accurately reproduced. Shadowed objects
are visible in the point cloud, and do not appear to negatively
impact the overall quality of the model.

The most significant qualitative drawback of the Hexrotor
/ D7100 model is the curvature of edged objects. This round-
ing effect was observed on many of the rocks and boulders in
the model. The edges and sharp features of these objects re-
main readily visible, but are softened considerably in the point
cloud. Improved image resolution, overlap, and/or computer
processing capabilities would likely produce a higher point
cloud resolution and accuracy, thus reducing this rounding ef-
fect.

Fig. 12. Hexrotor / D7100 3D reconstruction of the US-89
landslide.

4.3.3. Quadrotor / GoPro Model

An image of the Quadrotor / GoPro model is presented in
Figure 13. There is a noticeable decrease in the resolution of
the Quadrotor / GoPro model that is roughly proportional to
the reduced resolution of the still images used in the SfM re-
construction. This reduced resolution produces a much grainier
point cloud appearance, as observed in Figure 10, but with rel-
atively few holes or discontinuities. The box edges are severely
rounded and not readily visible (see Figure 11). Vegetation re-
mains visible in the Quadrotor / GoPro model, but is generally
indistinguishable from the surrounding rocks if it were not for
the color of the points. Road markings and color variations on
rocks remain somewhat visible and identifiable, but are quite
blurred. Rocks are generally distinguished by their size, color,
and location, but the geometry of individual rocks is difficult
to distinguish. Shadowed objects remain visible, but are less
defined.

Fig. 13. Quadrotor / GoPro 3D point cloud model of the
US-89 landslide.

4.3.4. Flying Wing / GoPro Model

An image of the Flying Wing / GoPro model is presented in
Figure 14. The resolution of the Flying Wing / GoPro model
is slightly worse than the resolution of the Quadrotor / GoPro
model. Qualitatively, the two GoPro models have similar fea-
tures, except that the Flying Wing / GoPro model is much more
blurred and grainy, as can be seen in Figure 10. This is due
to the lack of any image stabilization technology on the fixed
wing sUAV and the slightly higher ground velocities that the
fixed wing was flown at. Cross-sections of the wooden boxes
appeared in the Flying Wing / GoPro model did not accu-
rately represent the boxes (see Figure 11). None of the wooden
boxes are clearly visible in the 3D reconstruction. Vegetation
and road markings are still visible in the Flying Wing / Go-
Pro model, but are much more blurred than in the Quadrotor /
GoPro model. Some color variation on a few of the boulders
is visible, but only the larger boulders can be individually dis-
tinguished in the 3D reconstruction. Shadowed objects remain
visible in the Flying Wing / GoPro model, but are very blurred.

The most attractive qualitative feature of the Flying Wing /
GoPro model is that it covers the largest geographic area of any
of the models that were developed. This could be due to the fact
that the flying wing sUAV has a much larger turn radius than its
multi-rotor counterparts, and can cover much more area than a
multi-rotor in a given amount of time due to its increased flight
velocity.

4.4. Additional Considerations and Practical Guidance
for Engineers/Scientists

While the Quadrotor / GoPro and Flying Wing / GoPro mod-
els have a much lower resolution and accuracy than either the
TLS or the Hexrotor / D7100 models, they should not neces-
sarily be labeled as “inferior” without a consideration of their
intended purpose or objective. For example, even though the
TLS and Hexrotor / D7100 models have excellent resolution,
their file sizes (13GB and 3GB, respectively) are relatively
large, thus making them bulky, difficult to distribute/share, and
generally limited to use on specialized workstation computers
that have the necessary hardware to view and manipulate them.
Conversely, the Quadrotor / GoPro and Flying Wing / GoPro
models are much smaller in file size (0.5GB and 0.3GB, re-
spectively), making them easier to distribute/share and more
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Fig. 14. Flying Wing / GoPro 3D point cloud model of the
US-89 landslide.

viewable/usable on a wider range of computers and worksta-
tions. If an engineer or scientist wanted to make accurate mea-
surements (change detection analysis) with the point cloud mod-
els, then he/she would likely want a high-resolution point cloud
such as the TLS or Hexrotor / D7100 model. However, if the
engineer or scientist simply wanted to create a 3D visualization
of a particular site for qualitative or marketing/presentation
purposes, and did not require accurate measurements or change
detection from the model, then the lower-resolution Quadro-
tor / GoPro or Flying Wing / GoPro models would likely be
superior. The lower-resolution modeling solutions may even
be more appealing to engineers and scientists when they con-
sider that the Quadrotor / GoPro and Flying Wing / GoPro
platform/sensor combinations generally cost significantly less
than the heavy-lift multi-rotor/DSLR platform/sensor combi-
nations, and are generally much easier to operate, maintain and
transport.

The ideal platform/sensor combination for remote sensing
with SfM computer vision depends upon several variable fac-
tors including: (1) desired model resolution and accuracy, (2)
the potential need for quantitative or qualitative model assess-
ments, (3) the size of the area to be modeled, (4) the level of
sUAV operator experience and skill, (5) the operating environ-
ment (high winds, extreme temperatures, inhibitive infrastruc-
ture such as overhead power lines), (6) the ability to obtain nec-
essary federal and local authorizations to operate SUAVs com-
mercially, and (7) the funds available for the necessary SUAV
and sensor hardware acquisition. Each possible sUAV/sensor
combination has varying advantages and disadvantages related
to these identified factors, and should be carefully considered
by an engineer or scientist prior to equipment acquisition and
operation.

As demonstrated in this study, resolution and accuracy are
primarily affected by the resolution and image sensor quality
of the selected digital camera, the quality of imaging lens, the

altitude and velocity of the sUAV, and the availability/effectiveness

of image stabilization technology (self-adjusting multi-axis gim-
bal). High-resolution DSLR cameras are excellent optical sen-
sors for UAV-based remote sensing with SfM computer vision,
but require larger and more expensive SUAV platforms that are
capable of carrying larger payloads for a sufficient flight du-
ration. Alternatively, smaller digital cameras (point-and-shoot
cameras or durable sports cameras such as a GoPro) can be

carried by the majority of sUAV platforms that are currently
commercially available, but generally result in poorer model
resolution and accuracy due to their reduced image resolu-
tion and/or inferior image sensor. UAV platform specifications
must be carefully reviewed to ensure sufficient payload capac-
ity and/or flight duration to carry the chosen sensor and all nec-
essary accessories (sensor gimbals and controllers) to complete
the desired remote sensing mission(s).

The desired engineering or scientific application should drive
the selection of the sUAV/sensor combination accordingly. For
engineering or scientific applications where small (< 10 cm)
displacements or deformations must be detected and measured,
or where small object details must be captured in the 3D recon-
struction, a heavy-lift multi- or single-rotor sUAV platform and
DSLR camera combination with image stabilization technol-
ogy would likely be required. A smaller sUAV (small quadro-
tor or fixed wing) and digital camera combination is recom-
mended for applications that can tolerate model inaccuracies
of up to approximately 50 cm, require faster model processing
times, and/or require wider aerial coverage. Any engineering
application that requires a high level of model detail on ver-
tical surfaces or an sUAV flight in a constrained environment
should incorporate a multi- or single-rotor sSUAV platform that
is capable of hovering and vertical flight instead of a fixed wing
sUAV platform.

Engineers and scientists must also consider site conditions
in addition to desired model resolution/accuracy when select-
ing a particular sUAV/sensor combination for remote sensing
applications. Wind, temperature, and site obstacles can all in-
fluence the ability of a particular sUAV platform to perform
adequately. For example, our Hexrotor sUAV platform could
only be flown before 10:00 AM at the US-89 landslide because
the hot temperatures later in the day were causing the platform
to malfunction and/or fail because some heavy-lift multi-rotor
sUAV platforms rely upon controller modules that are rela-
tively sensitive to temperature. For extreme temperature condi-
tions, single-rotor or fixed wing sUAV platforms generally are
much more resilient, but require greater skill and experience
to operate. As another example, multi-rotor SUAV platforms
generally perform very well in cluttered environments due to
their superior maneuverability (assuming skilled sUAV opera-
tors are controlling the platforms). However, these same multi-
rotor SUAV platforms generally perform quite poorly in windy
environments (gusts in excess of 30 km per hour based on our
experience), and can experience dramatically increased power
consumption and operator workload to maintain flight path and
aerial stability. In such windy environments, fixed wing and/or
single-rotor SUAV platforms are generally much more reliable
in flight. However, these types of SUAV platforms can be much
more difficult to operate, and may require a more seasoned
and experienced SUAV operator. Matching pilot skill and ex-
perience to the sUAV platform and environmental conditions
are absolutely essential for safety, loss prevention, and quality
data collection (Stark et al. 2012).

5. Conclusions and Recommendations

To assess the effect of the SUAV platform on the resolution
and accuracy of UAV-based remote sensing with SfM com-
puter vision, three different SUAV/sensor combination were
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tested to produce 3D reconstructions of a section of US High-
way 89 near Page, Arizona that had experienced significant
damage due to a 2013 landslide. Imagery used to build the
three 3D reconstructions were collected using the following
sUAV/sensor combinations: a heavy-lift Skyjib Hexrotor sUAV

carrying a Nikon D7100 DSLR camera, a DJI Phantom IT Quadro-

tor sUAV carrying a GoPro Hero 3+ camera with customized
5.4mm flat lens, and an 208-cm Ritewing fixed wing sUAV
also carrying a GoPro Hero 3+ camera with customized 5.4mm
flat lens. A baseline 3D reconstruction of the landslide was
created with two different terrestrial laser scanner (TLS) de-
vices: a FARO Focus®P 130 and a FARO Focus®P 330. TLS
data was processed with AutoDesk ReCap software, and the
StM computer vision processing was performed with Agisoft
PhotoScan. Resolution of each sUAV-based 3D reconstruction
was manually calculated, and accuracy of each 3D reconstruc-
tion was quantified by comparison with the baseline model us-
ing ICP analysis with the software CloudCompare. Qualitative
evaluations were also performed and documented visually by
the authors.

The largest factor affecting both accuracy and resolution, or
quantitative results of the aerial models was the camera res-
olution. The 24 MP images captured with the Nikon D7100
camera generated a model resolution about 70 times greater
than that from the 2.76 MP images taken from the GoPro Hero
3+ camera. The Nikon D7100 model was also about 4 times
more accurate on average than the GoPro Hero 3+ models
when compared against the TLS ground-truth model using ICP
analysis. However, we observed that the SUAV platform selec-
tion also had a significant impact on the resolution of the point
cloud model, with a 16% increase in point resolution when a
multi-rotor platform with sensor stabilization technology was
used instead of a fixed wing platform without sensor stabiliza-
tion technology.

Additional observations and guidance from this study in-
clude the following:

* The intended application and the necessary resolution
and accuracy of the 3D point cloud model is the most im-
portant factor to consider when selecting an sUAV plat-
form and corresponding imaging sensor

« Still imagery generally produces superior SfM 3D re-
constructions to images that have been extracted from
video

» sUAV platform selection will be limited by sensor weight

* Fixed wing and single-rotor platforms cover larger areas
and are more robust in extreme environments that are
prone to drastic changes in temperature, but are more
susceptible to motion blur in the collected imagery un-
less they incorporates some type of image stabilization
technology

* Multi-rotor sUAV platforms collect high-quality imagery
with minimal motion blur, and are desirable for applica-
tions requiring resolute and accurate models, but tend to
be more negatively impacted by environmental factors
like wind and extreme temperatures

11

* The sUAV platform selected must be compatible with
the skill level of the intended operator and the antici-
pated environmental conditions to ensure safety and min-
imize platform damage

» There are cost, weight, size and operational tradeoffs
for platform/sensor combinations to achieve the accu-
racy required for an intended mission

Because related technologies are rapidly expanding, the best
practices for performing sUAV-based remote sensing with SfM
computer vision will continuously evolve and improve. How-
ever, the results and guidance presented by this study will pro-
vide some useful basis for development of general principles
of operation for engineers and scientists desiring to use sUAV-
based remote sensing to collect data from the field.
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