

Increased Stability of a Power Grid by Energy Storage of Cryogenic Carbon Capture

Seyed Mostafa Safdarnejad
James Richards
Jeffrey Griffiths
John Hedengren
Larry Baxter

Chemical Engineering Department
Brigham Young University (BYU)
April 2016

Stability of Power Grid

CO₂ Capture Systems Impact Grid Stability

Trends in global CO₂ emissions, PBL Netherlands Environmental Assessment Agency, 2015

- New regulations for CO₂ emission from power plants:
 - EPA's regulation for existing power plants (2015)
 - 30% reduction in CO₂ from 2005 levels by 2030
 - EPA's regulation for new power plants (2015)
 - 1100 lbs/MWh CO₂ for gas-fired power plants
 - 1400 lbs/MWh CO₂ for coal-fired power plants

Solutions to Increase Stability

- Advanced Metering Infrastructure
- Demand Response
- Distribution Automation
- Renewable Resource Forecasting
- Distributed Storage (Electric Vehicles with V2G capability and batteries)
- Microgrids (distributed generation)
- Bulk energy storage (Pumped stored hydropower, compressed air energy storage, thermal storage)

Benefits of Energy Storage

- Grid frequency and voltage regulation (grid stabilization and power quality control)
- Shaving of load peaks
- Smoothing of renewable power variability (ramp rate control)
- Energy arbitrage
- Backup power

Cryogenic Carbon Capture (CCC)

6

Advantages of theCCC Process

- Lower energy consumption
- Scalable energy storage
- Rapid-load-change
- capability
- Flexible operation
- Energy recovery

Jensen, PhD Dissertation, Brigham Young University, 2015

Brigham Young University

Hybrid System of Power Generation and CCC

Improved Profitability through Integration

- Dynamic integration of CCC with power generation units
- Assumed 90% CO₂ capture rate
- Meet residential and CCC electricity demands
- Maximize operational profit of the hybrid system
- Minimize cycling of the coal power plant

Optimization Approach

➤ Objective function: ℓ1-norm

$$\min_{x,y_{m},u} \Phi = w_{hi}^{T} e_{hi} + w_{ho}^{T} e_{lo} + y_{m}^{T} c_{y} + u^{T} c_{u} + \Delta u^{T} c_{\Delta u}$$

s.t.
$$0 = f(\dot{x}, x, u, d)$$

- Dead-band for the controlled variable
- Prioritize multi-objective functions
- Orthogonal collocation on finite elements for DAE to NLP conversion
- Active Set or Interior Point Solvers
 - APOPT or IPOPT
- APMonitor Modeling Language

$$0 = g(y_x, x, u, d)$$

$$a \ge h(x, u, d) \ge b$$

$$\tau_c \frac{\delta y_{t,hi}}{\delta t} + y_{t,hi} = s p_{hi}$$

$$\tau_c \frac{\delta y_{t,lo}}{\delta t} + y_{t,lo} = s p_{lo}$$

$$e_{hi} \ge (y_m - y_{t,hi})$$

$$e_{lo} \ge \left(y_{t,lo} - y_m \right)$$

Power Production vs. Electricity Demand

10

Baseline Boiler

Load-following Boiler

- Meet the total electricity demand
- Refrigerant storage used in gas turbine
- > 100% utilization of the wind power

Brigham Young University

Impact of Energy Storage on Baseline Case

With Energy Storage & Combined Cycle Power Production

Without Energy Storage & Simple Cycle Power Production

Comparison of Power Production

 $Grounded\ Power = Total\ Power\ - Total\ Demand$

With Energy Storage & Combined Cycle Power Production

Without Energy Storage & Simple Cycle Power Production

- \$13.6k/hr average profit
- \$58k/hr average hourly revenue
- Recovery of most of the CCC constructional expenses by taking advantage of the arbitrage of energy

Cycling Cost

Increased thermal, pressure, and mechanical related stress and fatigue

 Cycling scenarios: Cold start, Hot start, Warm start, and Load-following

Cycling Cost (Continued)

Rainflow cycle counting algorithm

	With Wind		Without Wind	
	Load-following boiler	Baseline Boiler	Load-following boiler	Baseline Boiler
# cycles in Boiler (cost)	20 (\$88200)	1 (\$4410)	18 (\$79380)	1 (\$4410)
# cycles in gas turbine (cost)	17 (\$10880)	21 (\$13440)	23 (\$14720)	15 (\$9600)
Total cycling costs	\$99080	\$17850	\$94100	\$14010

Key Result: 80-85% reduction in cycling damage with energy storage

16

- CCC process removes 99% of CO₂ with lowest cost per kg CO₂
- Large-scale energy storage improves renewable adoption
- CCC + energy storage reduces cycling costs by 80-85%
- Reduction in the need to spinning reserves
- Power grid stability

Brigham Young University

Acknowledgements

Sustainable Energy Solutions (SES)

Graduate students in PRISM Group at BYU

Undergraduate research assistants

Increased Stability of a Power Grid by Energy Storage of Cryogenic Carbon Capture

Seyed Mostafa Safdarnejad
James Richards
Jeffrey Griffiths
John Hedengren
Larry Baxter

Chemical Engineering Department
Brigham Young University (BYU)
April 2016