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ABSTRACT

Developing Modeling, Optimization, and Advanced Process Control Frameworks for
Improving the Performance of Transient Energy–Intensive Applications

Seyed Mostafa Safdarnejad
Department of Chemical Engineering, BYU

Doctor of Philosophy

The increasing trend of world-wide energy consumption emphasizes the importance of on-
going optimization of new and existing technologies. In this dissertation, two energy–intensive
systems are simulated and optimized. Advanced estimation, optimization, and control techniques
such as a moving horizon estimator and a model predictive controller are developed to enhance the
profitability, product quality, and reliability of the systems. An enabling development is presented
for the solution of complex dynamic optimization problems. The strategy involves an initializa-
tion approach to large–scale system models that both enhance the computational performance as
well as the ability of the solver to converge to an optimal solution. One particular application of
this approach is the modeling and optimization of a batch distillation column. For estimation of
unknown parameters, an `1-norm method is utilized that is less sensitive to outliers than a squared
error objective. The results obtained from the simple model match the experimental data and model
prediction for a more rigorous model. A nonlinear statistical analysis and a sensitivity analysis are
also implemented to verify the reliability of the estimated parameters. The reduced–order model
developed for the batch distillation column is computationally fast and reasonably accurate and
is applicable for real time control and online optimization purposes. Similar to estimation, an `1-
norm objective function is applied for optimization of the column operation. Application of an
`1-norm permits explicit prioritization of the multi–objective problems and adds only linear terms
to the problem. Dynamic optimization of the column results in a 14% increase in the methanol
product obtained from the column with 99% purity. In a second application of the methodology,
the results obtained from optimization of the hybrid system of a cryogenic carbon capture (CCC)
and power generation units are presented. Cryogenic carbon capture is a novel technology for CO2
removal from power generation units and has superior features such as low energy consumption,
large–scale energy storage, and fast response to fluctuations in electricity demand. Grid–level en-
ergy storage of the CCC process enables 100% utilization of renewable power sources while 99%
of the CO2 produced from fossil–fueled power plants is captured. In addition, energy demand of
the CCC process is effectively managed by deploying the energy storage capability of this process.
By exploiting time–of–day pricing, the profit obtained from dynamic optimization of this hybrid
energy system offsets a significant fraction of the cost of construction of the cryogenic carbon
capture plant.

Keywords: dynamic optimization, initialization, batch distillation column, cryogenic carbon cap-
ture, power generation, energy storage
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CHAPTER 1. INTRODUCTION

The economic and environmental desires to reduce industrial energy consumption drives

ongoing optimization of the new and existing technologies important in engineering. For exam-

ple, large-scale continuous distillation columns have been the focus of optimization since the first

column was built. However, the transient nature of batch columns has caused many to remain

unoptimized which results in more energy consumption than is likely needed and an opportunity

for improvement. This emphasizes the continuous need for optimization of the existing units in-

cluding continuous and batch distillation columns. Another important area that would benefit from

optimization is energy generation. While new technologies for power production, such as fuel

cells, and new energy sources such as renewable energy, show promise, they cannot yet replace a

grid–scale thermal power unit. Therefore, fossil–fueled power plants will continue to play a ma-

jor role in power sector. Optimizing the operation of fossil–fueled power plants typically means

increasing the efficiency of the system which also results in lower CO2 emission. Although ef-

ficiency improvement reduces the CO2 emission from these power plants, it is not adequate to

achieve the target CO2 emission level of the Clean Power Plan enforced by the environmental pro-

tection agency (EPA). Thus, optimization of the existing units should accompany the technology

development in finding ways to reduce CO2 emission from fossil power plants.

Developing modeling frameworks for estimation, optimization, and control of these two

key industrial applications (batch distillation and power plant carbon reduction) is a focus of this

dissertation. These two application areas are complex and require large–scale differential and al-

gebraic equation models to describe their dynamic behavior. A fundamental contribution of this

work is to not only optimize these two particular applications, but also to develop methods to

initialize and efficiently solve large–scale and complex system models. Developing initialization

strategies for large–scale nonlinear systems is described in Chapter 2. In Chapter 3, a mathematical

modeling framework is developed for a batch distillation column. In this case, the purpose is to de-
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velop a simple model that takes advantage of a moving horizon estimator for parameter estimation

and a model predictive controller for maximization of the column product while staying within

the product quality limits. Chapters 4-6 develop a mathematical model for the integrated system

of a cryogenic carbon capture and power generation units. This work includes power production

from fossil-fueled and renewable power plants with consideration of the energy–storing version

of cryogenic carbon capture. The goal of this application is to maximize the profitability of the

hybrid system such that it can meet the overall electricity demand and capture 90% of the CO2

emissions from the fossil-fueled power plants. A model predictive control framework is utilized in

this application to optimize the operation of the hybrid system.

While this study considers two specific applications in the energy industry, they are pre-

sented in a modular basis. The estimation and control frameworks developed in this dissertation

are applicable to similar systems of batch distillation or energy production, but are also applicable

more generally to optimize complex dynamic systems.

1.1 Initialization Strategies and Objective Functions for Estimation and Optimization of
Dynamic Systems

The large-scale dynamic applications considered in this study are non-convex and non-

linear, i.e. there are local optimal points and the solution cannot be found from a single matrix

inversion. Consequently, the solver may not be able to find a successful solution. In addition,

many variables and equations define these systems and their time–dependence. Thus, a good

initialization strategy is necessary to find a successful solution with a reasonable computational

time. Several techniques have been utilized to initialize these nonlinear systems. These techniques

include initialization from a steady–state or a linear solution of the problem, structural decomposi-

tion of the differential and algebraic equations (DAEs), and initialization from the sequential and

simultaneous simulation of the problem. Developing initialization strategies for these nonlinear

systems is the foundation of further analysis of the two industrial applications considered in this

dissertation. Chapter 2 details these initialization strategies.

In two applications, new techniques for estimation, optimization, and control are used to

develop the modeling frameworks. These techniques include moving horizon estimation (MHE)

and model predictive control (MPC) that benefit from an objective function in the form of an `1-
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-norm. An `1- norm objective function has superior performance to the conventional least square

techniques. The details of an `1- norm objective function for estimation and optimization purposes

are discussed in details in Chapter 2.

1.2 Batch Distillation Columns

Many specialty and smaller-use items are often processed in batch distillation columns. The

transient nature of batch columns has caused many to remain unoptimized. Work on batch columns

has increased in the last 30 years as computers have become more sophisticated, and several stud-

ies have considered both advanced solving techniques and advanced column configurations. The

models developed for batch column optimization generally fall into two categories: first-principles

models and shortcut or simple models. First-principles models are those with governing mass

and energy balance equations, detailed thermodynamics, tray dynamics, system non-idealities and

variable flow rates. While these models are more accurate, the use of these models has been lim-

ited due to high computational costs. The second class of models, shortcut models, has received

far greater attention. These models contain less physics and are generally used for estimates and

comparative studies. The primary purpose of these models is to create an accurate, computation-

ally fast simulation for use in design and control of batch columns. While these models achieve

the reduction in computational load, the lack of experimental data makes it difficult to determine

the accuracy of these models. The assumptions made in these models also limit their use to ideal

systems.

The gap between first-principles models and shortcut models is large. First-principles mod-

els can provide predictions for many systems but require thermodynamic and physical property

models as inputs, while the assumptions in shortcut models make them applicable only to a small

class of relatively ideal systems. In this dissertation, a method is proposed for developing shortcut

models with relaxed assumptions. The method is based on fitting parameters in place of simpli-

fying assumptions to include system non-idealities without solving the first-principles equations.

Empirical model regression requires extensive experimental data whereas first-principles models

typically need less data to determine unknown parameters, being based on fundamental correla-

tions. Dynamic parameter estimation can be used to reduce the experimental load. The case study

presented in this dissertation required only one experiment to determine model parameters. As
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Figure 1.1: Overview of methodology for batch column optimization with novel contributions underlined

with any model containing fitting parameters, there is concern over the accuracy of the parameters.

By using nonlinear statistics and a model sensitivity analysis, it is possible to determine how many

parameters can be estimated from the collected data and the acceptable range for those parameters.

These steps are shown in Figure 1.1 and form the heart of the method. Underlined elements of the

methodology indicate the new approach to batch separation systems.

The well-known methodology shown in Figure 1.1 is applied to an experimental case study.

The methodology includes the use of `1-norm dynamic parameter estimation, nonlinear statistics,

and a model parameter sensitivity analysis. These techniques are applied together to a batch dis-

tillation column in a holistic approach to dynamic optimization. Models developed using this

method account for system non-idealities not seen in typical shortcut models without sacrificing

computational speed. The fast solution time of the models developed in this study allows for their
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utilization in real–time control and online optimization applications. The novel contributions of

this study are:

• Development of a reduced–order model that is suitable for real–time control

• Application of an `1-norm objective function for estimation and optimization

• Nonlinear statistical analysis with approximate multivariate confidence regions

• Model validation for both estimation and optimization

1.3 Hybrid System of Power Generation and Cryogenic Carbon Capture

The second application considers a hybrid system of power generation units and cryogenic

carbon captureTM (CCC). The key to achieve target levels of CO2 emissions in the power sec-

tor is to integrate fossil-fueled power generation plants with a carbon capture system. Although

various methods have been developed for CO2 capture, a major drawback of most CO2 removal

systems is the parasitic energy load. Cryogenic carbon captureTM is a novel technology for CO2

separation from power plant flue gas and is less energy intensive compared to the conventional

capture systems. The CCC process cools flue gas from power generation units to the point that

CO2 desublimates. The process then separates solid CO2 from the remaining gas and melts it.

Both the remaining flue gas and pressurized solid CO2 warm back to higher temperatures.

The CCC process captures CO2 in the flue gas through desublimation. The CCC process

requires two refrigeration loops that consume most of the energy. The CCC process, however, has

some configurations that store energy in the form of a refrigerant. In the energy–storing version,

CCC generates refrigerant during non–peak hours and stores it in insulated vessels for peak hour

usage, thereby replacing the compressor energy with the stored refrigerant. This causes the refrig-

erant production rate to decrease during peak hours, which decreases the energy demand required

by the CCC process for as long as the stored refrigerant is available. With the decreased demand,

more power is available during peak hours relative to the baseline coal boiler rated capacity. In this

dissertation, storage of only one of the refrigerants is considered as it provides more energy during

the recovery mode. Although other refrigerants could be selected, the refrigerant considered for

this purpose is LNG. In addition, during the energy recovery mode of the CCC, a gas turbine can
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provide more power through the combustion of a fraction of the LNG after it goes through the

CCC process and is converted to natural gas.

Additionally, the LNG generation and storage cycle primarily involves compressors and

heat exchangers; therefore, the storage/recovery or load changing response time is fast (seconds)

compared to that of the steam boilers (hours). The faster energy storage response time is well

matched to intermittent sources like wind turbines and enables the conventional power generation

systems to follow rapidly changing loads. This results in an easier integration of thermal power

generation systems with renewable intermittent power supplies. As renewable energy sources

become a larger portion of the energy market, the significance of rapidly responding to large fluc-

tuations with energy storage becomes critical to maintaining a reliable and cost–effective electric

grid. Storage capacity of LNG vessels also allows scaling from the proposed energy storage to

large–scale systems.

Sustainable Energy Solutions developed the CCC process and energy–storing capabilities

and the detailed models that determine system energy demand and response time. The novel

contributions of this study include developing grid–level models and optimizing CCC in the context

of grid performance. Some of the novel contributions of this work are:

• Dynamic integration of the CCC process with baseline and load–following power generation

units

• Application of the grid–level energy storage facilities for load management

• Full utilization of wind power and optimizing the contribution to the grid

• Enhanced operational flexibility of the integrated energy system

• Reduction in cycling costs of power generation units by using energy storage

• Quantification of impact of energy storage in meeting the demand in combined and simple

cycles power generation units
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1.4 Outline

This dissertation is divided into 5 chapters. Chapter 2 describes the initialization strategies

developed to achieve a successful solution and to decrease the simulation time for estimation and

control of dynamic applications. These initialization strategies are first demonstrated on simple

problems and they build the foundation for more complex systems such as the applications used in

this dissertation. In addition, the standard frameworks for modeling, estimation, and control of the

applications used in this dissertation are discussed in Chapter 2. These frameworks benefit from an

`1-norm objective function in which has a superior performance over the conventional least square

techniques.

Chapter 3 describes a systematic approach to develop a simple model for optimization of a

batch distillation column. The details of the simple model developed for a batch distillation column

and the experimental procedures taken to verify the model are discussed in this chapter. The results

from the simple model are also compared to a more rigorous model. A nonlinear statistics analysis,

a parameter ranking, and a sensitivity analysis are also described in verifying the accuracy of the

model. The last section of this chapter describes the optimization of the column with the simplified

model and the validation of the optimization results.

Chapter 4 investigates the dynamic integration of cryogenic carbon capture with power

generation units. This chapter includes a mathematical model developed for the non-energy-storing

version of the hybrid system. First, application of the model in summer and winter conditions is

discussed. Then, the impact of increasing the contribution of wind power in meeting the electricity

demand on profitability of a hybrid system without energy storage is reported. A key result is that

there is a maximum wind energy adoption fraction beyond which the intermittent power source is

not fully utilized.

Chapter 5 considers the performance of a hybrid system of power generation units and an

energy storing version of cryogenic carbon capture. The model developed in Chapter 4 is modified

in this chapter to account for energy storage and export of natural gas to a pipeline. The coal–

fired power generation unit considered in this chapter is able to load follow without excess energy

production.

Chapter 6 considers the performance of a hybrid system of a CCC process and power

generation unit in which the coal–fired plant operates as a baseline unit. In addition, the impact of
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energy storage on reduction of the cycling cost of a power plant in following the electricity load is

presented in this chapter. This chapter continues with a comparison between a typical power plant

that has a CO2 capture process, a simple cycle peaking unit, and a combined cycle unit.

Chapter 7 presents the main highlights of this dissertation followed by a discussion for

future research directions.

1.5 Main Contributions

The main contributions of this dissertation are summarized as following:

• Initialization strategies for optimization of dynamic systems, Chapter 2.

• Reduced–order models and validation of dynamic parameter estimation and optimization for

batch distillation, Chapter 3.

• Modeling hybrid systems of cryogenic carbon capture and baseline power generators and

investigating the impact of cryogenic carbon capture on the performance of power plants,

Chapter 4.

• Grid–level dynamic optimization of cryogenic carbon capture with energy storage, load–

following conventional, and renewable power sources, Chapter 5.

• Hybrid system of cryogenic carbon capture and baseline power generators including both

peaking and combined cycle units, Chapter 6.
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CHAPTER 2. INITIALIZATION STRATEGIES FOR OPTIMIZATION OF DYNAMIC
SYSTEMS

2.1 Introduction

Differential and algebraic equations (DAEs) are natural expressions of many physical sys-

tems found in business, mathematics, systems biology, engineering, and science. In business, the

supply chain can be optimized by modeling the storage, production, and consumption through-

out a network [1]. In mathematics, ordinary (ODEs) or partial differential equations (PDEs) are

used to describe certain classes of boundary value problems. In engineering, these equations result

from material, energy, momentum, and force balances [2]. In science, laws of motion are naturally

described by differential equations that relate position, velocity, and acceleration [3, 4].

Just as differential equations naturally describe many systems, these same equations can

also be used to optimize among many potential designs or feasible solutions. One difference

between static or steady-state models and dynamic models is that optimal solutions must not only

observe constraints at one time point, but also along a future time window. Part of what makes a

dynamic solution challenging is that design variables at one time instant affect both current and

future objective values and constraints in the time horizon. This is generally challenging from an

optimization standpoint because of many degrees of freedom that are adjustable at each time step,

strong nonlinear relationships, and a wide range of sensitivities between the adjustable parameters

and multiple objectives.

2.1.1 Simulation and Optimization of DAE Systems

There are many solution approaches for sets of ODEs or DAEs and a review of all pos-

sible methods is beyond the scope of this work. Dynamic systems can be solved as ODEs or

DAEs through the simultaneous approach [5–11] to dynamic optimization as opposed to a semi-

sequential [12] or sequential approach [13–17]. The sequential method is where the model equa-
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tions and objective function are calculated in successive evaluations. In a sequential approach, the

DAEs are solved independently of the objective function. Each evaluation of the objective func-

tion involves fixing the independent variables at current iteration values and solving the dynamic

equations forward in time with a shooting approach. It is referred to as a shooting method because

trial solutions are propagated forward in time and the resulting dynamic trajectory is used to cal-

culate the objective function. Successive evaluations of the objective function are used to compute

gradients of the objective with respect to the decision variables and drive towards an optimal solu-

tion. Terminating the optimization progress before convergence typically produces a feasible yet

sub-optimal result. Sequential or shooting methods use forward integrating solvers for differential

equations with variable time steps to maintain the integration accuracy. A number of solvers or

modeling platforms exist for solving ODE or DAE problems with either sequential or simultaneous

methods [18, 19] such as DASSL [20], SUNDIALS [21], and many others [22–27].

Dynamic models can be translated into sets of algebraic constraints that can be solved with

standard gradient-based optimization techniques. The differential terms can be translated into al-

gebraic equations through orthogonal collocation on finite elements. Orthogonal collocation on

finite elements allows a simultaneous solution where objective function and equations are solved

together instead of sequentially. Orthogonal collocation is simply a technique that relates differ-

ential terms to state values in a discretized time horizon. This translation of DAEs into a set of

algebraic equations also allows capable Linear Programming (LP), Quadratic Programming (QP),

Nonlinear Programming (NLP), or Mixed-Integer Nonlinear Programming (MINLP) solvers to

optimize these dynamic systems with a simultaneous approach instead of shooting methods that

rely on forward integrating simulators. Similar approaches are used for ODEs, DAEs, PDEs, and

Partial DAEs. Large-scale problems such as PDEs or PDAEs with few decision variables may

be best suited for analysis by a sequential or shooting method. Small or medium scale problems

with many decision variables or unstable systems are best suited for analysis with the simultane-

ous approach [28]. Dynamic problems can include continuous or discrete variables that can be

solved with MINLP solvers, have multiple competing objectives, and require robust or stochastic

optimization methods to deal with uncertainty. Unlike sequential approaches, terminating the opti-

mization progress does not give a feasible sub-optimal result. It is only at final convergence that the

equations are satisfied with the objective function at an optimal value. The solvers and modeling
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platform used in this study are embedded in the APMonitor Modeling Language and Optimization

Suite [29].

2.1.2 Standard DAE Form

Dynamic modeling of physical systems involves several phases starting with the selection

of a model form. Dynamic model forms may be empirical where the form of the model is deter-

mined from data, fundamental where the model parameters and equations are derived from first

principles, or hybrid with a mix of empirical and fundamental relationships. One advantage of us-

ing empirical models is that only inputs and outputs must be collected for the model development

and less information about the process is required to develop a model. Fundamental models are

often difficult to develop because particular relationships can either be unknown or impossible to

isolate. In each case, the differential equations relate certain process inputs (u) to differential states

(x) or algebraic states (y).

The method taken in this work is to solve hybrid dynamic process models in open-equation

form with either differential or algebraic equations while minimizing an objective function. Differ-

ential equations are simply those that contain at least one differential term and algebraic equations

are those that do not. While different objective functions can be used in Equation 2.1a, an `1-norm

formulation is adopted in this dissertation and is discussed in Section 2.2. Equations may also

consist of equality (=) or inequality (< or ≤) constraints as shown in Equation 2.1:

min
u

h(x,y,u,θ ,d) (2.1a)

0 = f
(

d x
d t

,x,y,u,θ ,d
)

(2.1b)

0≤ g
(

d x
d t

,x,y,u,θ ,d
)

(2.1c)

where Equation 2.1b is the set of DAE equality constraints and Equation 2.1c is the set of DAE

inequality constraints. For solvers that require only equality constraints and simple inequality

bounds on variables, the inequality constraints are converted to an equality constraint with the

addition of a slack variable [30]. Equations need not contain differential states, states variables,
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inputs, and outputs. However, each equation must contain at least one differential or algebraic state

or output variable.

The inputs may consist of parameters (θ ) that are either known from fundamental relation-

ships or measured directly. There may also be unknown parameters that can either be inferred

from other measurements or unknown parameters that are unobservable given the available mea-

surements. Other types of inputs may be disturbances (d) that affect the system that are either

measured or unmeasured. Finally, inputs also include those that can be changed to optimize or

control the system (u). These are referred to as design variables or manipulated variables depend-

ing on whether it is a design or control application. These parameters, disturbances, or manipulated

variables constitute the set of exogenous inputs that change independently of the system dynamics

and act on the system to change the dynamic response.

Figure 2.1: DAE model equations are discretized and solved over a time horizon.

Differential states are those variables that are calculated based on differential equations

while algebraic states are those variables that do not appear as differential terms. Algebraic states

may be either continuous or discontinuous while differential states are typically considered as

continuous as shown in Figure 2.1. For dynamic simulation models there must be a unique equality

constraint or binding inequality constraint for each model state. If there are more variables than

equations
(
nvar ≥ neqn

)
, the system has degrees of freedom that can be arbitrarily adjusted to best

meet one or more objectives. If there are more equations than variables
(
neqn ≥ nvar

)
, the system
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may be over-specified and there is likely no set of variables that can simultaneously satisfy all

constraints.

2.1.3 DAE Models with Higher Order Derivatives

Equations that contain higher order derivatives can also be fit into the standard form as

shown in Equation 2.1 by creating additional variables for every higher order derivative. For ex-

ample, acceleration is equal to the second derivative of position as in a = d2x
dt2 . By adding the

additional variable of velocity and an additional equation, the second order system becomes a set

of two first order differential equations as in a= dv
dt and v= dx

dt where a is acceleration, v is velocity,

and x is position. A similar approach can be used for any higher order derivatives. Initialization

of higher order derivative models requires an initial condition that is specified for each differential

variable.

2.1.4 DAE Models with Integral Terms

Equations that contain integrals can also be fit into the standard form as shown in Equation

2.1 by creating a new differential variable for every integral term. For example, an ideal Pro-

portional Integral Derivative (PID) controller may be included in a process model to simulate the

action of an embedded control system as shown in Equation 2.2.

u = ub +P (SP−PV )+ I
∫ t

0
(SP−PV )dt−D

d(PV )

dt
(2.2)

In this case, u is the controller output, ub is the controller bias, and P, I, and D are the

tuning constants. The integral term
(∫ t

0 (SP−PV )dt
)

grows with persistent offset between the

setpoint (SP) and process variable (PV ). This integration term is placed in standard DAE form by

differentiating the integral and creating a new variable XI that accumulates the error. The DAE

expression for a PID controller becomes two equations as shown in Equation 2.3.

u = ub +P (SP−PV )+ I XI−D
d(PV )

dt
(2.3a)

dXI

dt
= SP−PV (2.3b)
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The initial condition for the integral term, XI , is set to zero when the controller is changed

from manual to automatic. While the method of modeling integrals is shown for the PID equation

as an example, it is generally applicable to other integral expressions as well. One drawback

to differentiating any expression is that small numerical errors may accumulate over a time with

a well known effect termed “drift off”. This effect is also shown Section 2.3.3, in relation to

differentiating higher index DAEs.

2.1.5 DAE Models with Discrete Variables

DAE models may contain discrete variables such as binary, integer, or discrete decision

variables. When the DAE model is converted into algebraic form, these additional discrete vari-

ables require an MINLP solver. Several capable MINLP solvers exist [31–34] to solve this class

of problems and may use strategies such as Branch and Bound (successive NLP), Outer Approx-

imation (successive MILP), or a combination of these methods to solve the system of equations.

Initialization of this class of DAE models is a relaxation of the discrete variables to form a contin-

uous variable approximation [28].

2.2 Standard Objective Functions for Estimation and Control

The standard modeling frameworks discussed in previous sections are generally applied in

dynamic estimation and control in an application for which an objective function is minimized.

In the case of estimation, the error between model prediction and the measurements observed

over time is minimized by manipulation of the unknown variables or parameters. In the case of

optimization and control, the error between the controlled variables and the reference trajectories

for them is minimized through the manipulation of decision variables. Different objective functions

could be considered for both estimation and control applications. Dynamic estimation and control

of the applications used in this dissertation benefit from an objective function in the form of an `1-

norm. The standard formulation of an `1-norm objective function for estimation and optimization

is reviewed in Sections 2.2.1 and 2.2.2, respectively. The equations developed for an `1-norm

objective function are solved together with the equations presenting the system in consideration

(with the general form shown in Equation 2.1).
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2.2.1 Parameter Estimation

Many approaches can be used to find the parameters, two of which are least squares formu-

lation and `1-norm formulation for the objective function. According to the Central Limit Theorem,

errors resulting from several sources tend to be normally distributed regardless of the distributions

of the individual sources. This indicates that under broad conditions, errors usually are normally

distributed. However, if there are wild data points (outliers) that originate from other sources, the

`1-norm is less sensitive to them than the least squares approach. Additionally, the form of the

objective function used in this `1-norm formulation is smooth and continuously differentiable as

opposed to using the absolute value function. The form of the objective function with `1-norm for-

mulation is shown in Equation 2.4 [35, 36]. The nomenclature for Equation 2.4 is found in Table

2.1.

Ψ = min
θ ,x,y

wT
x (eU + eL)+wT

p (cU + cL)+∆θ
T c∆θ (2.4a)

s.t. 0 = f (
δx
δ t

,x,y,θ ,d,u) (2.4b)

0 = g(x,y,θ ,d,u) (2.4c)

0≤ h(x,y,θ ,d,u) (2.4d)

eU ≥ (y− z+
δ

2
) (2.4e)

eL ≥ (z− y− δ

2
) (2.4f)

cU ≥ (y− ȳ) (2.4g)

cL ≥ (ȳ− y) (2.4h)

0≤ eU ,eL,cU ,cL (2.4i)

Equations (2.4b) to (2.4d) represent the model of the system and the constraints. Equa-

tions (2.4e) and (2.4f) also represent the deadband for the measured variable; i,e, if the predicted

value for this variable is within a deadband from the measurements, the objective function is not

penalized. The expressions presented by Equations (2.4g) and (2.4h) permit the optimizer to pe-
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nalize large deviation of the predicted variable from the prior model output. An `1-norm objective

function is discussed in detail in [35, 37].

Table 2.1: Nomenclature for general form of the objective function with `1-norm formulation for dynamic
data reconciliation

Symbol Description
Ψ minimized objective function result
y model outputs (y0, . . . ,yn)

T

z measurements (z0, . . . ,zn)
T

ȳ prior model outputs (ȳ0, . . . , ȳn)
T

wT
x measurement deviation penalty

wT
p penalty from the prior solution

c∆θ penalty from the prior parameter values
δ dead-band for noise rejection

x,u,θ ,d states (x), inputs (u), parameters (θ), or unmeasured
disturbances (d)

∆θ T change in parameters
f ,g,h equations residuals ( f ), output function (g), and in-

equality constraints (h)
eU ,eL slack variable above and below the measurement

dead-band
cU ,cL slack variable above and below a previous model

value

2.2.2 Control Optimization and Implementation

Similar to the parameter estimation developed in Section 2.2.1, many approaches could be

used in control and optimization of the dynamic systems. The form of the objective function used

in this dissertation is related to a nonlinear dynamic optimization with an `1-norm formulation. In

comparison to the common squared error norm, `1-norm is advantageous as it allows for a dead-

band and permits explicit prioritization of control objectives. The form of the objective function

with `1-norm formulation is shown in Equation 2.5 [35,36]. The nomenclature for Equation 2.5 is

found in Table 2.2.

Ψ = min
u,x,y

wT
h eh +wT

l el + yT
m cy +uT cu +∆uT c∆u (2.5a)
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s.t. 0 = f (
δx
δ t

,x,u,d) (2.5b)

0 = g(y,x,u,d) (2.5c)

0≤ h(x,u,d) (2.5d)

τc
δ zt,h

δ t
+ zt,h = SPh (2.5e)

τc
δ zt,l

δ t
+ zt,l = SPl (2.5f)

eh ≥ (y− zt,h) (2.5g)

el ≥ (zt,l− y) (2.5h)

Equations (2.5b) to (2.5d) represent the model of the system and the constraints. Equations

(2.5e) and (2.5f) also represent the path that the optimization algorithm uses to achieve the desired

set point for the controlled variable. The expressions presented by Equations (2.5g) and (2.5h)

permit the optimizer to keep the controlled variable within a deadband without penalization. A

more thorough comparison of the `1-norm and least squares for both estimation and control is

provided in [35].

Table 2.2: Nomenclature for general form of the objective function with `1-norm formulation for dynamic
optimization

Symbol Description
Ψ minimized objective function result
y model outputs (y0, . . . ,yn)

T

zt ,zt,h,zt,l desired trajectory target or dead-band
wh,wl penalty factors outside trajectory dead-band

cy,cu,c∆u cost of variables y,u, and ∆u, respectively
u,x,d inputs (u), states(x), and parameters or

disturbances(d)
f ,g,h equation residuals( f ), output function (g), and in-

equality constraints (h)
τc time constant of desired controlled variable response

el,eh slack variable below or above the trajectory dead-
band

SP,SPlo,SPhi target, lower, and upper bounds to final set point
dead-band
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2.3 DAE Initialization Strategies

This dissertation details several strategies to initialize a mathematical representation of a

dynamic system to be solved by a simultaneous approach over a time horizon. The purpose of

initialization strategies is to find a solution close to the originally intended problem, particularly

for those problems that may require a nearby solution for successful and efficient computational

methods. In this work, no initialization refers to the case where initial conditions for the problem

are the best guess of a reasonable value between lower and upper bounds. When a best guess is

poor, the decomposition strategy proposed in this work can identify which set of variables and

constraints cannot be solved successfully because the decomposition simulation terminates and

reports that the particular block was unsuccessful. The guess values or the form of the equations

can then be modified to aide convergence (e.g. avoid divide by zero). In many cases the best guess

for decision variables is to hold them constant at nominal values. While this may not be an easy

problem to solve, a square system with equal number of equations and variables is first attempted

to initialize the problem. If the system is inherently transient or unstable then a key decision

variable can be calculated as long as a corresponding output is fixed to maintain a square system

of equations. Approaches detailed are with linearization of all or parts of nonlinear equations,

analysis of the problem sparsity to create a structural decomposition, warm start from a prior

solution, and incremental unbounding of decision variables that leads up to solving the originally

intended problem. An overview of the general strategy is presented in Figure 2.2.

These strategies are intended to seed an optimization solver with a nearby solution that

may improve the computational performance and ability to find a feasible or optimal solution.

The flowchart is intended as a guide for DAE systems where the solver either does not produce a

solution or requires excessive computational effort. Not all of the steps are demonstrated in this

paper, such as iterating in the decision variable space and filtering in new data. These strategies are

the subject of other work [38, 39]. Any step within the flowchart can be consolidated or skipped

if a following step is successful. If a prior solution exists, such as from a time-shifted predictive

control or estimation, a warm start often improves computational performance [40].
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Figure 2.2: Flowchart for initialization of DAE systems

2.3.1 Initialization with Steady-State or Quadratic Approximate Solutions

One method for initialization of nonlinear dynamic models is to simplify the model form

so that a solution can be computed and used to seed the original problem with better initial values.

Steady-state initialization is accomplished by setting all derivative terms d x
d t to zero and solving

the resulting set of equations and objective function. Contour plots identify feasible regions and

binding constraints [41] and can provide guidance on proper initialization values to both start

feasible as well as seed the optimization. A second method is to take local derivatives of Equation

2.1 to produce a QP form of the model and objective function that is shown in Equation 2.6:

min
u

1
2

zT
∇zzh z+∇zh z, z =

[
x y u

]
, (2.6a)
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dx
dt

= Ax+Bu, A = E−1
∇ fx, B = E−1

∇ fu, E =−∇ fẋ (2.6b)

y =C x+Du, C = F−1
∇ fx, D = F−1

∇ fu, F =−∇ fy (2.6c)

With n state variables, m inputs, and p outputs, the dimensions of the matrices in the state

space model are A ∈ Rnxn, B ∈ Rnxm, C ∈ Rpxn, and D ∈ Rpxm. In many applications derived from

first principles models, C simply relates a subset of the states to output variables and D is a matrix

of zeros. In some cases, either E or F is numerically singular. In this case, a more general state–

space form is preferred as an alternative to Equation 2.6 as E dx
dt = Ãx+ B̃u and F y = C̃ x+ D̃u. In

this case, Ã = ∇ fx, B̃ = ∇ fu, C̃ = ∇ fx, and D̃ = ∇ fu.

This initialization strategy may also apply to a nonlinear model where there is an explicit

solution to linear model predictive control (LMPC) [42–51] and moving horizon estimation [52–

56]. A potential strategy for obtaining a close initial guess is therefore to linearize the constraints

and create a quadratic approximation to the objective and solve the resulting QP. The linear model

solution may be sufficiently close to the nonlinear problem to enable fast convergence. Another

point to consider for MHE and MPC is that, except for initializing the controller for the first time,

a solution from the prior cycle time is typically available to initialize the current cycle [57]. Time-

shifting can perform this initialization, where the entire solution is shifted backward by one time

step [58]. The second step becomes the initial condition and each subsequent step receives values

from the next step of the prior solution. The final time point can either stay the same or else the

model can be integrated by one time step to initialize this final point.

2.3.2 Structural Decomposition of DAE Models

Discretization of DAE models creates sparse and structured NLP or MINLP problems.

This sparsity and structure leads to efficient initialization of the optimization problem by breaking

the larger problem down into smaller problems [59] that can be solved as independent subsets of

variables and equations [60, 61]. An added benefit of successively solving independent sets of

variables and equations is that infeasible equations, constraints, data, or other inputs can more

easily be identified.
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Figure 2.3: Two initialization cases for demonstration of infeasibility detection and a final optimal case

To illustrate the strength of this approach, a simple application with one parameter (p), two

variables (x, y), and two equations
(

dx
dt = a, 4dy

dt + y = 3x
)

is optimized to maximize the variables

x, y by adjusting the parameter a. An upper bound of 5 is placed on each variable. As a first

step, the problem is set up as a simultaneous optimization problem and decomposed to reveal

independent sets of variables and equations. A first case has parameter a = 5.0, causing the value

of x to reach the upper limit first. The algorithm correctly identifies the variable and associated

equation that first cause an infeasible condition. A second case has parameter a = 0.5, causing the

value of y to become infeasible before x and the decomposition algorithm again correctly identifies

the first offending set. This decomposition does not just identify the particular time step that

the problem becomes infeasible but also identifies the specific equation and variable within that

time step. A third case in Figure 2.3 shows the optimal solution. While this case is trivial, the

identification of an infeasible set may not be obvious for many large-scale or complex problems.

For some problems, such as the one posed above, the inequality constraints lead to an

infeasible problem. In this case, the solver minimizes the infeasibility and reports an unsuccessful

solution. Although unsuccessful in satisfying all constraints, the new starting point is sometimes

valuable for initialization purposes. The infeasibility may be further reduced when degrees of

freedom are introduced to the solver as shown in the last subplot of Figure 2.3. As with the energy
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storage application shown in Section 2.4.4 even an infeasible solution as a starting point may have

improved convergence performance.

The decomposition method is to first rearrange the sparsity matrix of the Jacobian (1st

derivatives) into a lower block triangular form [62] as shown in Figure 2.4. The next step is

to solve each block as an independent set of variables and equations. Once a block is solved,

the variable values are fixed and the next block is successively and separately solved from other

variables and equations. In the successive solution of equation blocks, figures such as the one

shown in Figure 2.4 help identify the infeasible equation(s), if any. This can then be used to

resolve the infeasibility. This decomposition strategy is applied to problems that are square with

the same number of variables and equations and where a zero-free diagonal is obtained in block

triangular form. Sequential simulation is a special case of this method where successive initial

value problems are solved to integrate forward in time. The block triangular form has the ability

to identify further independent subsets at each time step and thereby show improvement over the

time-step sequential strategy.

2.3.3 Initialization of Higher Index DAE Models

Special treatment is required to initialize and determine consistent algebraic and differen-

tial conditions for DAE models [19, 63]. The variables that do not appear as differential terms

are categorized as algebraic variables. When a dynamic simulation is initialized with state and

derivative information, arbitrary selection of the initial conditions may not satisfy the model equa-
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tions at the initial time point. This inconsistent set of initial conditions may cause one step ahead

(sequential) methods to fail to initialize.

The number of times that algebraic equations must be differentiated to return to ODE form

is referred to as the index of the DAE. For example, an index-1 DAE becomes an ODE by differ-

entiating each algebraic equation at most once. Before the development of DAE solvers, it was

necessary to convert the DAE model through differentiation or rearrangement into ODE form. A

popular algorithm for performing this conversion was developed by Pantelides [64]. Recent ad-

vances have alleviated this requirement for solving index-1 DAEs [65], index-2 [66] (Hessenberg

form) [67], and automatic differentiation advances [68].

The numerical drift off is a well-known phenomenon for DAE equations that are differ-

entiated to ODE or a lower index DAE form and several methods have been devised to reduce

the error [69]. The cause of the drift can be attributed to small errors that integrate over time to

cause a substantial deviation from the correct value and are caused by symbolically differentiating

the higher index DAE terms back to ODE form. To avoid this drift, higher index DAE models are

solved in NLP form with the simultaneous approach discussed earlier. Although the algebraic vari-

ables may not be consistent at the initial condition, after one time step of simulation the algebraic

equations are consistent with the model equations and other variable values. If consistent initial

conditions are required, a small (e.g. 1e-20 sec) time step can be taken to resolve the algebraic

variables.

2.4 Case Studies on Dynamic Initialization

The following sections demonstrate the potential improvements and details of the DAE

initialization approach. The breadth of applications is intended to demonstrate particular concepts

as shown in Table 2.3.

2.4.1 Pendulum Motion: Higher Index DAE Forms

A pendulum application is used to investigate the effect of initialization on a range of

different forms of the same model. In this case, the model is of a pendulum motion in index-0

(Equation 2.7a), index-1 (Equation 2.7b), index-2 (Equation 2.7c), or index-3 (Equation 2.7d) DAE
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Table 2.3: Summary of Case Studies

Section Description Key Concepts Demonstrated
2.4.1 Pendulum Motion Higher Index DAEs
2.4.2 Continuously Stirred

Tank Reactor (CSTR)
Initialization with Linearized Equa-
tions and Structural Decomposition

2.4.3 Tethered Unmanned
Aerial Vehicle (UAV)

Initialization with Sequential Sim-
ulation and Structural Decomposi-
tion

2.4.4 Smart Grid Energy Sys-
tem

Initialization Strategies and Struc-
tural Decomposition

forms as shown in Figure 2.5 and Equation 2.7. More details about the mathematical representation

of pendulum problem are available in [70].

Figure 2.5: Pendulum motion

Index-0 DAE or ODE Form

dλ

dt
=
−4λ (xv+ yw)

x2 + y2 (2.7a)

Index-1 DAE Form

m
(
v2 +w2−gy

)
−2λ

(
x2 + y2)= 0 (2.7b)

Index-2 DAE Form

xv+ yw = 0 (2.7c)
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Index-3 DAE Form

x2 + y2 = s2 (2.7d)

An additional 4 equations are shown as Equation 2.8 and are common to all of the pendulum

models to describe velocity (v,w) and acceleration
(dv

dt ,
dw
dt

)
.

dx
dt = v
dy
dt = w

mdv
dt =−2xλ

mdw
dt =−mg−2yλ

(2.8)

Additional parameters include m as the mass of pendulum, g as a gravitational constant,

and s as the length of pendulum. The variable λ is a Lagrange multiplier. The simulated motion of

the pendulum is shown in Figure 2.6 with both x-axis and y-axis positions as x and y and velocities

as v and w, respectively. There is no significant difference between index-1 to index-3 simulation

results while the index-0 DAE solution drifts over time as shown in Figure 2.6. DAE initialization

with an ODE solver may lead to significant error. A recommended practice is therefore to solve

the DAEs with solvers that allow higher index expressions without differentiation.
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Figure 2.6: Solution to Index-0 to Index-3 DAE model forms
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For initialization, a lower block triangular form of the index-3 DAE sparsity is used to

identify small subsets that can be solved independently as shown in Figure 2.7. Each subset of

equations is solved successively, leading to an initial solution with default parameters. An alter-

native approach is to pre-solve the system of equations with no degrees of freedom (DOF). This

simulation step is a simultaneous solution of variables and equations but with decision variables

fixed at nominal values. Table 2.4 presents results with the APOPT solver [33] while Table 2.5

gives results with the IPOPT solver [71]. With the APOPT solver, the initialization is not required

for the index-3 and index-2 models because the initial conditions as default variable values pro-

duce a sufficiently accurate guess to enable a successful solution. On the other hand, some cases

do benefit from the initialization strategy by decomposition as shown in Tables 2.4 and 2.5. These

results show that both the active-set (APOPT) and interior point (IPOPT) sequential quadratic pro-

gramming (SQP) methods benefit from initialization although the initialization time may increase

the total time for some model forms as shown in this particular case.

The subsequent examples demonstrate that performance improvements are often possi-

ble with initialization but for the pendulum case there is no CPU-time benefit when considering

the combined time of initialization and solution. The fastest solution for index-3 models is with

APOPT and no initialization in 15.09 sec. For index-2 models it is with IPOPT and no initializa-

tion in 1.40 sec. The combined time for index-1 models is fastest with IPOPT in 2.68 sec although

after initialization IPOPT solves the problem in 1.27 sec. Finally, for the index-0 (ODE) model, the

fastest combined solution is with IPOPT in 32.5 sec. With IPOPT, a solution is only possible with
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Table 2.4: Summary of Initialization Results with APOPT

DAE
Form

Strategy Var Initialize Solution Total Iter

Index-3 Decompose 3401 2.31 sec 13.37 sec 15.68 sec 24
Index-3 No DOF 3401 6.17 sec 13.72 sec 19.89 sec 24
Index-3 No Init 3401 - 15.09 sec 15.09 sec 19
Index-2 Decompose 3401 3.12 sec 1.78 sec 4.90 sec 6
Index-2 No DOF 3401 5.81 sec 2.36 sec 8.17 sec 4
Index-2 No Init 3401 - 6.46 sec 6.46 sec 8
Index-1 Decompose 3401 30.8 sec 2.25 sec 33.1 sec 4
Index-1 No DOF 3401 Failed - - -
Index-1 No Init 3401 - Failed - -
Index-0 Decompose 3601 37.5 sec 3.53 sec 41.0 sec 3
Index-0 No DOF 3601 Failed - - -
Index-0 No Init 3601 - Failed - -

Table 2.5: Summary of DAE Initialization Results with IPOPT

DAE
Form

Strategy Var Initialize Solution Total Iter

Index-3 Decompose 3401 4.82 sec Failed - -
Index-3 No DOF 3401 1.41 sec Failed - -
Index-3 No Init 3401 - Failed - -
Index-2 Decompose 3401 5.12 sec 0.93 sec 6.05 sec 17
Index-2 No DOF 3401 1.28 sec 0.52 sec 1.80 sec 11
Index-2 No Init 3401 - 1.40 sec 1.40 sec 28
Index-1 Decompose 3401 44.1 sec 1.27 sec 45.4 sec 4
Index-1 No DOF 3401 Failed - - -
Index-1 No Init 3401 - 2.68 sec 2.68 sec 41
Index-0 Decompose 3601 31.2 sec 1.29 sec 32.5 sec 20
Index-0 No DOF 3601 Failed - - -
Index-0 No Init 3601 - Failed - -

initialization because the solver failed to find a solution within 100 iterations when the problem

was terminated.

2.4.2 Linear Initialization: CSTR Case Study

In linearized state-space form, it is generally easier to obtain an implicit solution to the

dynamic optimization problem. For small systems, it is possible to obtain an explicit solution to
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MHE and MPC. The solutions with linearized models are then used to initialize the nonlinear case.

Prior work shows that initialization with linear or convex approximations to parameter estimation

problems improves the convergence properties of the nonlinear or possibly non-convex problems

[72]. A continuously stirred tank reactor (CSTR) with first order kinetics is a common benchmark

problem used in other studies to demonstrate estimation [73] and control [74] algorithms. Species

A and an energy balance equation for the CSTR in Figure 2.8 are shown in Equation 2.9. The

reactor is fed with chemical A and a diluent. The objective is to maintain temperature control

below 400 K in the reactor and the concentration of A below 0.2 mol/L.
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Figure 2.8: Continuously Stirred Tank Reactor

V
dCa

dt
= q

(
Ca f −Ca

)
− k0exp

(
− E

R T

)
V Ca (2.9a)

ρVCp
dT
dt

= q
(
Tf −T

)
+∆Hr k0exp

(
− E

R T

)
V Ca +UA(Tc−T ) (2.9b)

With an elevated jacket temperature, without a controller in place, the reactor experiences

temperature run-away as shown in Figure 2.9 due to the exothermic heat generation and exponen-

tial dependence on temperature. The exponential increase in temperature is also accompanied by

a decrease in concentration of species A. The uncontrolled reactor temperature violates the upper

limit on reactor temperature of 400 K. Solving the simulation case with zero degrees of freedom,

as shown above, helps develop a feasible solution for the problem. This feasible solution can then

be used to initialize the decision variables for the main nonlinear CSTR problem.

A Nonlinear Model Predictive Controller (NMPC) is developed to reduce the concentration

of A below 0.1 mol/L and maintain the temperature between 375−380 K. A reference trajectory
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Figure 2.9: Uncontrolled linear and nonlinear response

with an `1-norm deadband [35] guides the approach to the desired setpoint as shown in Figure

2.10. The nonlinear MPC is initialized with a preliminary linear MPC solution (Equation 2.10b)

or through structural decomposition. This potential initialization strategy is to solve a lower block

triangular form of the nonlinear MPC to initialize the state and parameter values for a warm start

near the desired solution (see Figure 2.11).

dCa
dt
dT
dt

=

−( q
V + k

)
−k E

RT 2

∆Hrk
ρCp

(
− q

V −
UA

ρCpV + ∆Hrk
ρCp

E
RT 2

)Ca

T

+
 q

V 0 0

0 q
V

UA
ρCpV




Ca,i

Ti

Tc

 (2.10a)

[
T̂
]
=
[
0 1

]Ca

T

+[0 0 0
]

Ca,i

Ti

Tc

 (2.10b)

The original sparsity structure is shown on the left of Figure 2.11 while the reordered set of

variables and equations appears on the right. The first 10 variable blocks are shown as successively

larger blocks. The CSTR simulation has excellent decomposition with a maximum block size of 7

and a minimum block size of 2. The blocks represent the number of variables and equations that

are independent and can be solved prior to other variables and equations.
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Figure 2.11: Lower block triangular form for nonlinear MPC of a CSTR

Table 2.6: CSTR MPC comparison of linear pre-solve, block diagonal decomposition, and no initialization

Solver Strategy Var Initialize Solution Total Iter
APOPT Decompose 1054 0.10 sec 0.51 sec 0.61 sec 13
APOPT Linear 1054 0.17 sec 0.45 sec 0.62 sec 18
APOPT No Init 1054 - 0.95 sec 0.95 sec 27
IPOPT Decompose 1054 0.42 sec 0.64 sec 1.06 sec 40
IPOPT Linear 1054 0.51 sec 2.01 sec 2.52 sec 119
IPOPT No Init 1054 - 1.27 sec 1.27 sec 65
SNOPT Decompose 1054 0.11 sec 0.37 sec 0.48 sec 23
SNOPT Linear 1054 0.15 sec 2.78 sec 2.93 sec 108
SNOPT No Init 1054 - Failed - -
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Table 2.6 gives results for solvers APOPT [33], IPOPT [71], and SNOPT [75] with three

scenarios including decomposed solution initialization, linear pre-solve, and no initialization ex-

cept use of initial conditions. The fastest solution case is with a decomposition solution with

SNOPT with a total time of 0.48 sec. The nonlinear MPC case is initialized with only the initial

conditions that are propagated forward across the time horizon before solution begins. The best

solution time without initialization is with APOPT at 0.95 sec or twice the CPU time even when the

additional pre-solve decomposition time is included. For SNOPT, a solution is only possible with

initialization because the original problem fails to solve after 500 iterations. An important result

from this CSTR study is that initialization effectiveness is solver dependent but that an initialization

strategy tends to improve solution time for all solvers. At a future point, solvers may incorporate

initialization strategies that exploit the high degree of DAE problem structure to provide a feasible

starting point.

2.4.3 Tethered Aerial Pipeline Inspection: Initialization with Sequential Simulation

One of the limitations of small Unmanned Aerial Vehicles (UAV) is the limited range with

current battery technology and regulatory hurdles for autonomous and commercial flights in many

jurisdictions. One method to overcome both of these obstacles for infrastructure inspection is to

tether the aerial vehicle to a ground vehicle. The tether can provide a communication and power

conduit to the UAV to allow it to remain aloft indefinitely. The ground vehicle and aerial UAV

may be a fully automated system that is designed to regularly monitor infrastructure such as levee

systems, bridges, dams, pipelines, electrical transmission cables, and other large scale structures.

In this simulation, a UAV is tethered to an autonomous ground vehicle. As the ground

vehicle drives to the side of a pipeline, a multi-copter UAV hovers above the pipeline with an array

of cameras and leak detection sensors. The cable that connects the UAV to the ground robot is

specified to be 25 m in length. In this case the cable length is fixed although a retractable ground

vehicle-based or UAV-based cable is possible to adjust cable length and maintain cable tension.

A simplified model of this multi-agent optimization problem consists of DAEs as shown

in [3] but with a fixed position for the ground robot instead of dynamic equations for the drogue.

The sparsity and structural decomposition are shown in Figure 2.12. The cable system dynamics

are modeled by discrete nodes at regularly spaced intervals along the cable. The elasticity of the
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Figure 2.12: Lower block triangular form for a tethered UAV

cable, cross-wind disturbances, movement of the aerial and ground robots all contribute to the

complex cable and UAV movement. The dynamics of the cable are important to plan a path for

the UAV that maintains a minimum tension on the cable to avoid excessive slack. A secondary

objective beyond maintaining tension limits is to fly along a corridor above the pipeline and keep

pace with the movement of the ground vehicle. For fixed wing vehicles, a minimum relative air

velocity is required to maintain lift on the vehicle. A minimum relative air velocity is enforced in

this simulation although not required by a multicopter platform.

Unique aspects of this example problem for DAE initialization are that it is an unstable

system, highly nonlinear, and has many decision variables. The optimizers plan a path for the

UAV by adjusting the acceleration of the UAV in north, east, and vertical directions. Acceleration

limits
(

1 m
s2

)
are enforced to emulate responsive yet limited UAV capabilities. The optimizers seek

to maintain tension, elevation above pipeline, position over the pipeline, and air velocity to meet

monitoring objectives.

For this application, initialization steps are critical to first obtain a feasible and then optimal

solution. In this case, the initialization is accomplished with either the lower block triangular

solution or else with a single simulation with no degrees of freedom. The dynamic optimization

of 5,670 variables and 5,544 equations is solved in APMonitor (APOPT, IPOPT, and SNOPT

solvers) with a 2.4 GHz Intel i7-2760QM Processor. The results for this analysis are summarized
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Figure 2.13: A simulated tethered UAV performs surveillance of a pipeline.

in Table 2.7. Without initialization, the solvers fail to find a solution with a maximum of 1,000

iterations and CPU time of 3,600 sec.

Table 2.7: Tethered UAV comparison of linear pre-solve, block diagonal decomposition, and no initialization

Solver Strategy Var Initialize Solution Total Iter
APOPT Decompose 5670 3.1 sec 246.9 sec 250.0 sec 298
IPOPT Decompose 5670 15.1 sec 47.2 sec 62.3 sec 255
SNOPT Decompose 5670 3.2 sec 31.6 sec 34.8 sec 164
APOPT No DOF 5670 2.6 sec 292.0 sec 294.6 sec 96
IPOPT No DOF 5670 7.8 sec 61.7 sec 69.5 sec 158
SNOPT No DOF 5670 4.4 sec 136.0 sec 140.4 sec 656
APOPT No Init 5670 - Failed - 1,000
IPOPT No Init 5670 - Failed - 1,000
SNOPT No Init 5670 - Failed - 1,000

2.4.4 Smart Grid Energy System: Structural Decomposition

Cryogenic carbon capture (CCC) is a new technology for separation of CO2 from flue

gas. In this process, CO2 is separated by cooling the temperature to lower than the CO2 freezing

point. The main advantages of the CCC process are low energy consumption, fast response to load
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changes, and energy storage capability. The latter advantage is critically important for grid stabil-

ity, especially in the face of a large penetration of renewable energy. Time-shifting the electricity

demand of the CCC process is a result of the energy storage capability that can positively influence

power grid stability. Integration of the CCC process with grid-scale power generation units includ-

ing coal, gas, and wind power units is detailed in Chapters 4 to 6. The integrated system without

energy storage is considered as an example case study for initialization purposes. A schematic

diagram of the integrated system is shown in Figure 2.14.
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Figure 2.14: Hybrid system of CCC process and power generation units

The refrigeration cycles in the CCC process and integration of the process with power gen-

eration units make it a complicated system where many of the variables are co-dependent. The

sparsity and structural decomposition of this system are shown in Figure 2.15. The model decom-

poses into 3072 separate blocks with the largest block at 14 variables and the smallest block at 1
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variable. The independent blocks are, however, dependent on prior solutions of other independent

blocks.

Equation
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Figure 2.15: Lower block triangular form for hybrid system of CCC process and power generation units

The goal in this study is to maximize the operational profit of the integrated system. The

hybrid system is required to meet the total electricity demands of the CCC process and residential

area. In addition, the amount of the power produced should be controlled to avoid the excess power

production. A dynamic optimization framework is used with a time horizon of 8 days and 1 hour

time increments are considered. Consideration of eight days as the simulation time ensures that the

results are not influenced by the initial and boundary conditions. The results for the three middle

days of interest are shown in Figure 2.16. The number of variables and equations are 15,552 and

14,784, respectively, leading to 768 decision variables. This is more than the decomposition case

(9,600 variables and equations) or the dynamic simulation case (7,488 variables and equations)

because of the additional equations and variables necessary to implement reference trajectories and

manipulated variable tuning. The 768 decision variables are the amount of coal and natural gas

combusted for power production and the amount of natural gas imported to and exported from the

plant at each time step. The model is implemented in APMonitor and is solved using the APOPT

solver. The optimization problem is solved on a Dell R815 Server with an AMD Opteron Processor

6276 (2.3 GHz).

Without initialization of the problem, the solver fails to obtain a solution with a maximum

of 400 iterations and CPU time of 14 hr. Several initialization strategies are used to obtain a

feasible solution: (1) Nominal values are assigned for the decision variables and the problem and
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Figure 2.16: Power and demand profiles for the hybrid system of CCC process and power generation units

objective equations are solved with equal numbers of variables and equations (square problem),

(2) the square problem is solved by using the structural decomposition of the equations, (3) restart

from simultaneous dynamic simulation with all degrees of freedom fixed at specified values, and

(4) restart from sequential dynamic simulation where initialization is accomplished by solving

the square problem in a sequential time-step approach. With the strategies described above, the

decision variables are initialized from the simulation case and the optimization case is solved. In

this stage, decision variables are obtained by the optimizer. The combined CPU times for both the

initialization and final solution for each case are summarized in Table 2.8. Results for IPOPT and

SNOPT are not reported because the solvers failed for all cases. The computational time of each

initialization step is reported in seconds as well as the total computational time in hours.

Of all of the cases, only case 4 had a feasible solution after the initialization step. The other

cases also produced a solution but the solver was not able to find feasible values to satisfy all of the

equations within a specified convergence tolerance. Interestingly, even starting from the infeasible

36



Table 2.8: Computation time for hybrid system of a CCC process and power generation units

Case Strategy Var Initialize Total Iter
0 No Initialization 15,552 Skipped Failed 400
1 Simultaneous simulation with

objective equations
9,600 57.5 sec 5.56 hr 214

2 Structural decomposition as
shown in Figure 2.15

9,600 25.6 sec 5.55 hr 214

3 Simultaneous simulation
without objective equations

7,488 25.4 sec 5.54 hr 214

4 Sequential simulation initial-
ization

7,488 2.5 sec 2.67 hr 137

solution helped the optimization case to find a successful solution. As it is seen from Table 2.8,

initializing the optimization problem with a sequential dynamic solution of the square problem

has the least amount of computation time while the other three cases take approximately the same

amount of time to achieve a successful solution. The result of the optimization case is shown in

Figure 2.16, where total electricity demand of the hybrid system is met through a combination of

the coal, gas, and wind power.

2.5 Conclusions

A contribution of this dissertation is a strategy for improved initialization of dynamic sys-

tems. Techniques include structural decomposition, pre-solve with linear models, and initializa-

tion with no degrees of freedom. The dynamic models are often hybrid systems of fundamental

relationships and empirical parameters that can be adjusted to fit model predictions to data or opti-

mized over a time horizon. The discretized sparse structure is restructured to identify independent

sets of variables and equations that can be solved successively and independently. Higher index

DAEs, integral equations, and higher order derivatives fit into a general framework for addressing

large-scale optimization of dynamic systems. Several case studies motivate the use of initializa-

tion to improve solution time and enable successful solutions. While all initialization strategies

used in this analysis helped the convergence of the problem, finding the best approach for different

problems is the focus of future work.
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CHAPTER 3. FRAMEWORK FOR DYNAMIC PARAMETER ESTIMATION AND
OPTIMIZATION

3.1 Introduction

There are approximately 40,000 distillation columns in the US that are used to separate

chemical compounds based on vapor pressure differences in industries ranging from oil and gas to

pharmaceuticals. These separation columns consume 6% of the yearly US energy demand [76].

While many of the large production facilities use continuous processes, specialty and smaller-use

items are often processed in batch columns [77–79]. Continuous distillation columns have been

the focus of optimization work since the first column was built, but the transient nature of batch

columns has caused many to remain unoptimized. The transient nature of the market for these

specialty items has further hindered the optimization of batch columns [78]. As a result, little re-

search on batch column optimization is available in the literature before 1980 [80–83]. Work on

batch columns has increased in the last 30 years as computers have become more sophisticated,

and several studies have considered both advanced solving techniques and advanced column con-

figurations [84–98]. Terwiesch, et al. [99] and Kim and Diwekar [100] provide a detailed history

of the subject and a description of current batch distillation modeling and optimization methods.

The optimization of the batch columns can be subdivided into optimal design problems

and optimal control problems. Optimal design problems generally deal with column configuration,

while optimal control problems deal with column operation. These ideas are summarized well in

separations textbooks such as Diwekar [85], Stichlmair and Fair [101] and Doherty and Malone

[102] and will therefore not be discussed further here. Research studies on this subject follow

the same general outline as presented in the textbooks [78, 103]. The models developed for batch

column optimization generally fall into two categories: first-principles models and shortcut or

simple models.
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First-principles models are those with governing mass and energy balance equations, de-

tailed thermodynamics, tray dynamics, system non-idealities and variable flow rates [104–107].

These models are theoretically more accurate than shortcut methods, but they are only as accurate

as the thermodynamic and physical property models they use [78]. The use of these models has

been limited due to high computational costs. Several studies have been conducted using first-

principles models and advanced solving techniques to reduce computational cost [57, 108–113].

While these models accomplish the goal of reducing computational load, they are generally still

slower than shortcut models. In addition, the lack of experimental data for batch columns makes

it difficult to determine how much accuracy is lost when going from first-principles to lower-order

(first-principles model with advanced or simplified numerical methods) to shortcut models [114].

The second class of models, shortcut models, has received far greater attention. These

models contain less physics and are generally used for ballpark estimates and comparative studies.

A typical set of assumptions for these models is as follows: constant boil-up rate, no external

heat loss, ideal stages, constant relative volatility, constant molar overflow, total condenser without

subcooling and no column holdup [103, 106, 115–117]. More recent shortcut models have kept

most of the same assumptions while accounting for column dynamics using a non-zero column

holdup [111, 114]. The primary purpose of these models is to create an accurate, computationally

fast simulation for use in design and control of batch columns. While these models achieve the

reduction in computational load, the lack of experimental data makes it difficult to determine the

accuracy of these models [114]. The assumptions made in these models limit their use to ideal

systems.

The gap between first-principles models and shortcut models is large. First-principles mod-

els can provide predictions for many systems but require thermodynamic and physical property

models as inputs, while the assumptions in shortcut models make them applicable only to a small

class of relatively ideal systems. In this work, a method is proposed for developing shortcut models

with relaxed assumptions. The method is based on fitting parameters in place of simplifying as-

sumptions to include system non-idealities without solving the first-principles equations. Solving

for the fitting parameters requires extensive experimental data whereas first-principles models typ-

ically need less data, being based on fundamental correlations. Dynamic parameter estimation can

be used to reduce the experimental load. The case study presented in this work required only one
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Figure 3.1: Overview of methodology for batch column optimization with novel contributions underlined

experiment to determine model parameters. As with any model containing fitting parameters, there

is concern over the accuracy of the parameters. By using nonlinear statistics [118] and a model

sensitivity analysis [119], it is possible to determine how many parameters can be estimated from

the collected data and the acceptable range for those parameters. These steps are shown in Figure

3.1 (also shown in Chapter 1). Underlined elements of the methodology in Figure 3.1 indicate the

new approach to batch separation systems.

The well-known methodology shown in Figure 3.1 is applied to an experimental case study.

The methodology includes the use of `1-norm dynamic parameter estimation, nonlinear statistics

[118,120], and a model parameter sensitivity analysis [119]. These techniques are applied together

to a batch distillation column in a holistic approach to dynamic optimization. Models developed

using this method account for system non-idealities not seen in typical shortcut models without

sacrificing computational speed.

40



It should be emphasized that the dynamic parameter estimation, nonlinear statistics, and

control frameworks developed for the batch distillation column are applicable more generally to

complex dynamic systems. The general frameworks used for modeling, estimation, and control of

this problem are discussed in Section 2.2. In Section 3.1.1, the general equations used to represent

the nonlinear statistics and sensitivity analysis are overviewed.

3.1.1 Confidence Intervals and Sensitivity Analysis

Reliability of the parameters is investigated by implementing an approximate nonlinear

confidence interval calculation [118]. Non-linear confidence intervals can be found by solving

Equation 3.1 for the sets of parameters that make up the joint confidence region [121], then ex-

tracting the upper and lower bounds of that region in each dimension.

J(θ)− J(θ ∗)
J(θ ∗)

≤ p
n− p

Fn,n−p,1−α (3.1)

In Equation 3.1, J(θ) is the error between the measurements and the model prediction at a

value θ of the parameters, J(θ ∗) is the error between the measurements and the model prediction

at the best estimates of the parameters (θ ∗), p is the number of parameters in the model, n is

the number of data points, and Fn,n−p,1−α is the F-statistic at n and n− p degrees of freedom

with a confidence level of 1−α . The squared error objective is the only form of the nonlinear

confidence interval that has a theoretical foundation. This is because the F-statistic used to define

the confidence region is a ratio of χ2 distributions that compares the equivalence of two sets of

experimental results. The χ2 distributions are intended for least square objectives instead of `1-

norm objectives. According to the author’s knowledge, an equivalent F-statistic for nonlinear

confidence intervals and the `1-norm has not been derived. A nonlinear confidence interval for

`1-norm objectives based on the F-statistic is future work.

It is also desirable to determine the number of parameters that can be estimated or are

observable given a particular model form and set of data. Large confidence intervals signal that a

particular parameter may not be observable or that the effect of that parameter may be co-linearly

dependent with other parameters. A well-known systematic analysis is used to determine which

parameters can be estimated and rank the parameters in terms of the ability of a particular parameter
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to improve a particular model estimate [119, 122]. This procedure is accomplished in 3 steps: (1)

efficient computation of the sensitivities, (2) scaling of the dynamic parameter sensitivities, and (3)

singular value decomposition of the scaled sensitivity matrix to reveal an optimal parameter space

transformation.

The first step in performing the parameter analysis is to compute the state dependencies

to changes in the parameters. This can be accomplished with a variety of methods. One such

method is to compute a finite difference sensitivity of the parameters with a series of perturbed

simulations [123, 124]. A second method is to augment the model with adjoint equations that

compute sensitivities simultaneously with the model predictions [125]. A third method is a post-

processing method with time-discretized solutions to differential equation models [3, 8, 126]. This

post-processing method involves efficient solutions to a linear system of equations, especially over

other methods for large-scale and sparse systems [17].

The sensitivity is computed from time-discretized models that are solved by nonlinear pro-

gramming solvers. At the solution, exact first derivatives of the equations with respect to variables

are available through automatic differentiation. These derivatives are available with respect to the

states (∇ fx(x,θ)) and parameters (∇ fp(x,θ)). For the objective function, objective gradients are

computed with respect to states (∇Jx(x,θ)) and parameters (∇Jθ (x,θ)). Sparsity in those matrices

is exploited to improve computational performance, especially for large-scale systems. Sensitiv-

ities are computed by solving a set of linear equations as shown in Equation 3.2 with parameter

values fixed at θ̄ and variable solution x̄ as nominal values.
∇x f (x̄, θ̄) ∇θ f (x̄, θ̄) 0

∇xJ(x,θ) ∇θ J(x,θ) −1

0 I 0




∇θ x

∇θ θ

∇θ J(θ̄)

=


0

∆θi = 1

0

 (3.2)

To further improve the efficiency of this implementation, an LU factorization of the left

hand side (LHS) mass matrix is computed. This LU factorization is preserved for successive

solutions of the different right hand side (RHS) vectors because the LHS does not change and suc-

cessive sparse back-solves are computationally efficient in comparison with the LU factorization.

Each matrix inversion computes the sensitivity of the states to a particular parameter. Each param-

eter is successively set equal to a change of ∆θi = 1. All other elements of the vector on the RHS
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are set to 0. The solution to this matrix inversion computes the sensitivity of all variables in the

time horizon with respect to a particular parameter S = (∇θ x). It also computes the sensitivity of

the objective function with respect to the parameters
(
∇θ J(θ̄)

)
.

To summarize the sensitivity analysis, an efficient method is presented to compute sensitiv-

ities as a post processing step that is efficient even for large-scale and sparse systems. The sensitiv-

ity matrix is decomposed into singular values and eigenvectors that give the relative magnitude and

linear combination of parameters that are orthogonal. In this study, the transformed parameters are

not estimated directly but instead used as an advisory tool to determine which parameters and how

many can be estimated.

3.2 Dynamic Estimation and Optimization for a Batch Distillation Column

This established methodology is demonstrated for the first time on a binary batch distil-

lation column. While the methods are not new, the application to this specific column is novel

and gives experimental insight on issues encountered when applying dynamic optimization on ap-

plications that share common features. This section is subdivided into a brief discussion of the

apparatus and experimental procedure, parameter estimation and validation, and model optimiza-

tion and validation.

3.2.1 Apparatus and Experimental Procedure

A 38 tray, 2 inch, vacuum-jacketed and silvered Oldershaw column is used to collect all

experimental data (see Figure 3.2). Cooling water supplies the energy sink for the total condenser

at the top of the column. A 600 W reboiler heater is the only source of energy input. Reflux

ratio is set using a swinging bucket and can be changed as frequently as every 5 minutes. The

instantaneous distillate composition is determined using the refractive index of the solution and the

total distillate collected is determined via a graduated cylinder. Cumulative distillate composition

can be measured and inferred using the instantaneous compositions and a mass balance. The

instantaneous distillate composition can be measured every 5 minutes. The reboiler is initially

charged with 1.5 L of a 50/50 wt% mixture of methanol and ethanol for each run, with the goal

being a product of 99 mol% methanol.
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Figure 3.2: Apparatus used for the experiments

The non-optimized base case experiment consists of running the column at total reflux for

30 minutes, then setting the reflux ratio to a constant value, usually somewhere between 3 and 5,

and letting the column run until the cumulative overhead composition reaches 99 mol% methanol.

The collection time usually lasts 60 to 90 minutes, depending on the reflux ratio. The instantaneous

and cumulative compositions for a typical run, as well as the amount of product collected, can be

seen in Figures 3.3a and 3.3b, respectively. In this case, running the column at total reflux for 30

minutes, then using a constant reflux ratio of 4 for the next 90 minutes resulted in 13.7 moles of 99

mol% methanol.
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Figure 3.3: Non-optimized base case where the final required purity (> 99 mol% ethanol) is not met

3.2.2 Equations for the Simplified Process Model

Distillation is an inherently complex process involving mass and energy transfer, thermo-

dynamics, and often reaction kinetics. Models that describe these phenomena do not have to be

complex, however. The model developed here is used to describe the separation of a 50/50 wt%

mixture of methanol and ethanol, and is simple by design to illustrate this point.

The VLE model used here is found in the CHEMCAD database [127] and is shown in

Equation 3.3:

y∗n =−2.016x4
n +0.6861x3

n−1.206x2
n +1.721xn +0.0003984 (3.3)

where xn is the liquid mole fraction of methanol and y∗n is the vapor mole fraction of methanol

in equilibrium with the liquid. The subscript n denotes the stage for which the mole fraction is

being calculated. The temperature difference across the column is not considered for the simpli-

fied model developed in this Section; however, the impact of temperature change throughout the

column is considered in the model developed in Section 3.2.3. An adjustment to the equilibrium

vapor mole fraction is used because equilibrium is not often achieved during column operation.

This adjustment is in the form of a Murphree efficiency and is shown in Equation 3.4:

yn = yn+1−EMV (yn+1− y∗n) (3.4)
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where yn is the actual mole fraction and EMV is the efficiency. The efficiency is a fitting parameter

used to account for system non-idealities and is found using the data collected as part of this work.

The liquid mole fraction for each stage is found by performing a material balance at each

stage, n, as shown by Equation 3.5 where V is the vapor flow through the column, L is the liquid

return flow, and Ntray is the number of moles of liquid on the stage. The number of moles and the

composition in the reboiler (Nreb and xreb) change with time and are represented by Equations 3.6

- 3.7. The number of moles in the condenser (Ncond) is assumed constant while the composition

of the condenser (xcond) varies throughout the run (see Equation 3.8). Variation of the number of

moles and composition of the product with time are represented by Equations 3.9 and 3.10. The

liquid holdup for the condenser and trays are also design variables and are described in Equations

3.11 and 3.12, where ftray and fcond are the fitting parameters representing the fraction of the

initial reboiler charge on each tray and in the condenser, respectively. The tray holdup is assumed

constant across all stages. The stages are numbered from 1 to 40 with the top being 1 (condenser).

dxn

dt
=

L(xn−1− xn)−V (yn− yn+1)

Ntray
(3.5)

xreb
dNreb

dt
+Nreb

dxreb

dt
= Lx39−V yreb (3.6)

dNreb

dt
= L−V (3.7)

Ncond
dxcond

dt
=V (y2− xcond) (3.8)

dnp

dt
= D (3.9)

xp
dnp

dt
+np

dxp

dt
= D xcond (3.10)

Ncond = Nreb.init fcond (3.11)
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Ntray = Nreb.init ftray (3.12)

The vapor flow rate is found using the energy balance shown in Equation 3.13:

V =
hdot h f

Hvap
(3.13)

where hdot is the heat input from the heater, Hvap is the heat of vaporization for the methanol/ethanol

system, and h f is a fitting parameter representing the heating efficiency. The heat of vaporization

is approximated as a weighted average of the pure component heats of vaporization obtained from

the DIPPR Database [128]. The liquid flow rate, the reflux ratio, and the distillate rate are found

using an overall mass balance and the definition of the reflux ratio, shown in Equations 3.14 and

3.15, respectively:

V = L+D (3.14)

R =
L
D

(3.15)

where R is the reflux ratio and D is the distillate rate. Constant molar overflow is assumed through-

out the model and applies to the equations shown above.

3.2.3 Equations for the Detailed Process Model

A more detailed (although not completely from first-principles) model [129] with energy

balance equations validates the simplified model developed in Section 3.2.2. A similar notation as

the simplified model is used for the detailed model with a distinction in the stage number in which

the material and energy balances are developed. Vapor and liquid leaving each stage are noted

as Vn and Ln, respectively. The equations used in the detailed model are based on the following

assumptions:

• constant molar hold up for the condenser and trays

• fast heat transfer throughout the column

• liquid temperature on each tray at the mixture bubble point

47



• vapor liquid equilibrium relationships based on temperature dependent vapor pressures

• pressure drop across each tray is 1 mmHg = ∆P

• temperature dependent density, heat capacity, vapor pressure, and heat of vaporization

The overall and component mole balances as well as the energy balance equation for a

control volume over the condenser and accumulator lead to Equations 3.16 to 3.19.

V2 = L1 +D (3.16)

L1 = R D (3.17)

Ncond
dxcond

dt
=V2 y2− (L1 +D) xcond (3.18)

Qcond =V2 hV2− (L1 +D) hL1 (3.19)

A component and overall mole balance over the trays result in Equations 3.20 and 3.21.

Equation 3.22 also represents an energy balance for each tray in the column.

Ntray
dxn

dt
= Ln−1 xn−1−Ln xn +Vn+1 yn+1−Vn yn (3.20)

0 =Vn+1−Vn +Ln−1−Ln (3.21)

Vn+1 (hVn+1−hLn) =Vn (hVn−hLn)−Ln−1 (hLn−1−hLn) (3.22)

A component mole balance and the associated energy balance equation for the reboiler are

presented by Equations 3.24 and Equation 3.25. The reboiler heating rate, Qreb, is 600 W to drive

the separation together with the cooling of the condenser, Qcond . The overall mole balance for this

model is calculated from Equation 3.23.
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dNreb

dt
=−D (3.23)

xreb
dNreb

dt
+Nreb

dxreb

dt
= L39 x39−V40 yreb (3.24)

Qreb h f =V40 (hV40−hL40)−L39 (hL39−hL40) (3.25)

Accumulation of product and the change in composition of the product with respect to

changes in product moles are shown in Equations 3.9 and 3.10. The enthalpy of mixture for

both liquid and gas phases is a mole average of the enthalpy of each component. Enthalpy of

each component is obtained by integrating the heat capacity for liquid and adding the heat of

vaporization for vapor. The temperature profile in the column is also a function of the equilibrium

composition of each stage. The relationship between temperature and liquid composition of each

stage is based on vapor pressure and the pressure on each tray (Pn) as shown in 3.26 with ns = 2.

P1 = 0.86 atm (Ambient Pressure in Provo, UT) (3.26a)

Pn = Pn−1−∆P (3.26b)

Pn =
ns

∑
i=1

γi xi Psat
i (Ti) (3.26c)

The vapor composition at each tray is determined by the vapor liquid equilibrium correla-

tion shown in Equation 3.27 and is combined with the previous Equation 3.4 to relate the equilib-

rium composition (y∗n) to the actual tray composition (yn) based on the Murphree efficiency.

y∗n Pn = γ xn Psat
n (Tn) (3.27)

A full listing of the model equations, data, and Python source code is given in Appendix

A. The more sophisticated model demonstrates that the simpler and less rigorous model is able

to adequately predict the batch column performance for the purpose of optimization. The model

validation is shown in the subsequent section.
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3.2.4 Model Validation

Model validation is accomplished through dynamic parameter estimation. The parameter

estimation experiment was similar to a doublet test, with reflux ratios set to 3.5, 1, 7 and 3.5. The

column was allowed to come to steady state at infinite reflux before starting data collection; the

reflux ratio was adjusted every 15 minutes thereafter. The parameters found by fitting the model

with experimental data are heater efficiency
(
h f
)
, vaporization efficiency (EMV ), condenser molar

holdup as a fraction of initial reboiler charge ( fcond), and tray molar holdup as a fraction of initial

reboiler charge ( ftray). The parameter best estimates are shown in Table 3.1.

Table 3.1: Confidence interval calculation for the four parameter case

Parameter Best Estimate Upper 95% CI Lower 95% CI
h f 0.719 0.799 0.639

EMV 0.691 2.420 0
fcond 0.029 0.254 0
ftray 5.077e-4 0.142 0

The instantaneous distillate composition from the experimental run and the associated sim-

plified and detailed model predictions using optimized parameters are shown in Figure (3.4a). The

maximum error between the simplified model predictions and the experimental values is 10%. The

maximum error between the more detailed model and experimental composition data is 4.8% for

the `1-norm objective and 5.3% for the squared error objective. Cumulative methanol production

is shown in Figure 3.4b. The error between model and prediction is almost non-existent using

both an `1-norm or squared error objective. The simplified model parameter estimation has 3,510

equations with the squared error objective and 3,780 equations with the `1-norm objective and

requires less than 10 CPU seconds to solve. The more detailed model parameter estimation has

11,644 equations with the squared error objective and 11,972 equations with the `1-norm objective

and requires 89.4 (`1-norm) and 53.1 (squared error) CPU seconds to solve. All calculations are

performed on a Intel Core i7-2760QM CPU operating at 2.4 GHz with the APOPT solver. Because

the simplified model produces similar results to the detailed model and solves sufficiently fast for

online real-time optimization, it is selected for the batch column optimization.
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Figure 3.4: Model validation for initial parameter estimation
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Figure 3.5: Insensitivity of the `1-norm estimation to outliers compared to the squared error objective

If artificial outliers are introduced in both the composition (80 mol% ethanol at t = 10 min

and t = 50 min) and cumulative production (15 moles at t = 30 min and t = 50 min), the squared

error predictions deviate while the `1-norm estimates do not (see Figure 3.5). This is because

the `1-norm is less sensitive to outliers and results in better predictions. In this comparison, the

same model and initial values are used to represent the governing equations of the distillation

column while the objective functions for error minimization differ, as described by [35]. While

this particular example did not include significant outliers, many industrial applications of batch

distillation may have instruments that report values with drift, noise, or outliers [130]. While gross

error detection can resolve many of these data quality issues, it is also desirable to have estimation

methods that are less sensitive to bad data as shown in this example.

51



3.2.5 Testing the Reliability of the Estimated Parameters

Nonlinear confidence intervals are calculated for four potential parameters. Confidence re-

gions are typically reported as upper and lower limits on a particular parameter. This work extends

the nonlinear confidence region to multivariate analysis that improve co-linearity assessment for

batch distillation processes beyond a singular value decomposition or linear analysis. However, a

look at the confidence interval for each individual parameter is useful to illustrate the procedure

for model validation. A wide confidence interval suggests that there is insufficient structure in the

model (observability) to determine the parameters from available measurements. Another insight

that is gained from the confidence intervals is a test of the data diversity that leads to tight confi-

dence regions. A tighter confidence region implies that a smaller deviation of the parameter from

an optimal value is not statistically likely given a set of data to which the model is reconciled.

Table 3.1 shows the expected value and 95% confidence interval for each parameter. As seen in the

table, the interval for heater efficiency is narrow and in the range of values expected for a heater.

The intervals for the other three parameters are large enough to include zero and the interval for

vapor efficiency includes physically impossible values. Although the fit between model and data

is excellent there are large parameter confidence intervals. One possible explanation for the large

intervals is that the model is over-parameterized and thus has too many degrees of freedom. Thus,

a sensitivity analysis is implemented to investigate the correct parameterization of the model.

The scaled sensitivity is shown graphically in Figure 3.6. The sensitivity is scaled by

solution values as Ŝi, j =
(
∇θ jxi

)
θ̄i
x̄i

to show relative effects with a unitless transformation. The

scaling is applied with parameters θ̄ and variables x̄ at solution values. One clear result from this

sensitivity study is that the total production (np) is dependent on the heat input to the batch column

and that other parameters have little effect on the total production. As expected, a higher heating

rate (h f ) vaporizes additional liquid and increases the flow to the condenser. With a specified reflux

rate, the total production rate increases proportionally. In other words, a 1% increase in heating

produces 1% additional product. This scaled sensitivity is shown as a value of 1.0 in the top subplot

of Figure 3.6. The sensitivities of instantaneous product composition to the parameters are nearly

co-linear as seen by the bottom subplot of Figure 3.6. For example, heater efficiency
(
h f
)

and tray

holdup fraction ( ftray) can be increased and decreased, respectively, to produce nearly the same

final answer. Other parameters also show a high degree of co-linearity.
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Figure 3.6: Scaled variable sensitivities to the parameters

While sensitivity plots such as Figure 3.6 are instructive, it can be difficult for large-scale

systems to detect co-linearity or the number and selection of parameters that can be estimated from

the data. An alternative way to show the same information is to decompose the sensitivity matrix

with a singular value decomposition to reveal magnitudes of singular values (relative importance

of transformed linear combinations of parameters) and eigenvectors (orthogonal vectors for the

parameter space transformation). The singular value decomposition is applied to the dynamic

sensitivity analysis to show that there is one principle parameter
(
h f
)

that can be used to match

production data (np) as shown in Figure 3.7.

In this application, the parameter h f is principally used to match np. For selecting a next

parameter, ftray or EMV are feasible candidates with similar effect on the model. Estimating a third

parameter is likely not needed as seen by the magnitude of the singular values. The singular value

analysis gives a linear combination of the parameters estimated in transformed parameter space as

given by the eigenvectors.

This analysis is useful even for the non-transformed parameter estimation where the param-

eter estimates have physical meaning and constraints are enforced to reflect physical realism. For

example, in the case of h f , a value greater than 1.0 is not likely because it represents the fraction
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Figure 3.7: Magnitude of singular values from singular value decomposition reveals independent linear
combinations of parameters to reconcile data

of reboiler heater duty that enters the liquid. It is expected that some of the heat escapes due to

lack of insulation or conduction. In transformed space, the physical connection to the parameters

is lost.

As mentioned, ftray and EMV have a similar effect on the model. In this study, EMV is

selected as the second parameter. It was therefore determined to first solve for all four parame-

ters using `1-norm analysis, then fix both holdups and re-solve for the heater efficiency and the

vaporization efficiency. The resulting confidence region and parameter best estimates are shown in

Figure 3.8.

With only two parameters, the confidence regions are able to be graphically visualized.

Instead of confidence intervals with lower and upper bounds, the 95% confidence region is given

by any point within the area on the contour plot that falls within the boundary. Both the `1-

norm and squared error objectives are included in this plot to demonstrate that slightly different

optimal solutions and confidence regions are reported for differing objectives that align model

and measured values. One notable issue is that the objective function is relatively insensitive to

vapor efficiency (EMV ), especially as the vapor efficiency is above 0.4. The 95% confidence region

suggests that values between 0.37 and 1.0 are valid parameter estimates for EMV and that only one

parameter is required for parameter estimation. The objective function is very sensitive to heater

efficiency
(
h f
)

but not to EMV . One possible explanation for this is that this is a high purity column

where a difference of 0.01 in the mole fraction is of approximate equal importance to about 1.0
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Figure 3.8: Contour and surface plots of the objective function value for values of heater efficiency (h f ) and
vapor efficiency (EMV ). The 95% confidence interval for the `1-norm is not correct (future work) and the
confidence interval for the squared error is an approximation.

mole of production. Although the objective is scaled to account for this discrepancy, parameters

such as h f greatly influence both the predicted moles produced and the product composition. The

additional parameter EMV is required to achieve an acceptable fit for product composition although

it is less influential than the value of h f . The objective function contours confirm the observations

from the sensitivity analysis and singular value decomposition shown previously in Figures 3.6

and 3.7. The fit to the parameter estimation experiment is shown in Figures 3.9a and 3.9b. With

the model sufficiently validated, the next step is to optimize the column control scheme.

3.2.6 Model Optimization and Validation

The objective in this case study is to maximize the amount of methanol produced in the

column during a 90 minute run. The non-optimized base case production over a 90 minute run is

9.5 moles of 99.2 mol% methanol at a constant reflux ratio of 4 (see Section 3.2.1). The design

variable in this study is reflux ratio, with the option to change the reflux ratio every 5 minutes.

The control scheme for the optimized run is shown in Figure 3.10; the base case profile is shown
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Figure 3.9: Model validation for final parameter estimates

for comparison purposes. The optimized reflux ratio scheme starts low before increasing in a

nominally linear pattern. This is done to take advantage of the initially high concentration of

methanol in the condenser after the startup period.
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Figure 3.10: Reflux ratio for optimized control scheme compared to the non-optimized base case

The cumulative composition and total production are shown in Figure 3.11a and Fig-

ure 3.11b, respectively, with parameter values of h f = 0.8, EMV = 0.37, ftray = 0.0009, and

fcond = 0.006. Also shown in the figures are the model predictions and the non-optimized base

case results. The optimized control scheme resulted in 10.8 moles of 99.8 mol% methanol. This

change represents a 14% increase in column production over the base case. Given the high concen-

tration, it is possible to collect more product throughout the optimized run and still meet the purity
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specification. However, given the error associated with experimental measurements, the prediction

was left at a slightly conservative estimate to ensure the purity specification was achieved. The suc-

cess of this effort is seen in the fact that the error bars on the optimized composition measurements

stay above the purity requirement while those for the non-optimized base case do not.
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Figure 3.11: Optimized control scheme compared to the non-optimized base case and to the model predic-
tion

Also seen in the figures are the model predictions. The model predicts 9.75 moles of 99.0

mol% methanol will be produced during the run. The difference between model prediction and

experiment is 10% and 0.8% for overall production and product composition, respectively. The

agreement between model and experiment is excellent and reflects the work done to validate the

model.

3.3 Conclusions

Models of batch distillation are typically either first-principles and computationally expen-

sive or simple and valid for ideal systems. In this work, a well-known methodology for parameter

estimation, uncertainty quantification, and dynamic optimization is used to develop a simplified

model for optimization of a batch distillation column. This methodology uses experimental data

to solve for model fitting parameters and validates the results with nonlinear confidence intervals.

This allows the models to include system non-idealities and be applicable for real-time analysis.

This is accomplished using dynamic data with `1-norm error minimization. A dynamic sensitivity

analysis reduces batch experimental data requirements by determining a priori which parameters
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can be estimated. Nonlinear statistics are applied to quantify a posteriori the accuracy of those

same parameters. The results from the simplified model also agree with a first-principles model

but the simplified model solves 5-10 times faster than a first-principles model. While the methodol-

ogy is not novel, the application to this specific case study with experimental data is demonstrated

for the first time with insight into practical implications of working with real data.

The case study involves optimizing the control scheme for an existing batch column. A

38 tray, 2 inch, vacuum-jacketed and silvered Oldershaw batch distillation column was used to

collect experimental data. One experiment was performed to collect data for model validation and

another experiment was performed to validate the optimized control scheme. The optimized con-

trol scheme resulted in a 14% production increase over the base case while still meeting the purity

requirements. The model predictions for the optimized run are within 10% of the experimental

data.
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CHAPTER 4. HYBRID SYSTEM OF CRYOGENIC CARBON CAPTURE AND POWER
GENERATION UNITS

4.1 Introduction

Electricity transmission is one of the main forms of energy delivery today. According to

the International Energy Agency (IEA) [131], electricity transmits roughly 33% of the total energy

worldwide. Over eighty percent of this electricity is generated from non-renewable sources [132].

This makes the power sector one of the main sources of CO2 emission. The International Energy

Agency (IEA) estimated 42% of the 2012 global CO2 emissions are derived from power and heat

production [133]. There is nearly universal agreement among climatologists that anthropomorphic

CO2 and other greenhouse gases are the main causes of global warming [134]. The US and other

developed nations have reduced CO2 emissions in recent years through a combination of events,

including a global recession, transformation from coal to natural gas in new power generation

systems, increased automobile efficiency, and decreased miles driven [134, 135]. Furthermore, in-

terest in renewable energy sources like solar and wind power continues to increase which further

helps reduce the CO2 emissions. However, many renewable energy supplies are intermittent and

have capacity factors that are small compared to thermal power generation units. Therefore, be-

cause a one megawatt (MW ) wind or solar power unit cannot replace a 1 MW thermal power unit,

wind or solar power units must be integrated with thermal power units to develop a reliable power

generation system.

There is a wide body of research on integrated power generation systems that include both

thermal and renewable power plants. Goransson et al. [136] presented a model to investigate the ef-

fect of large-scale wind and thermal power integration. The purpose of the study was to investigate

the impact of wind power generation on the production strategies of thermal power production sys-

tems. They also considered the startup and turn down performance of the thermal units. However,

spinning reserves must often be on standby due to the limited rate of startup and the possibility
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of decrease from an intermittent supply. Delarue et al. [137] studied the impact of wind power

generation on the cost associated with electricity generation, fuel, and CO2 emission. They con-

sidered the unpredictability of wind speed forecast and proposed a wind forecasting method. The

power plant was scheduled over a 24 hour horizon with forecasted wind power data to meet the

demand with minimal cost. Hu et al. [138] developed a Solar Aided Power Generation (SAPG)

system, using the traditional Rankine power cycle and solar heating. They concluded that SAPG

is more efficient than both the solar thermal power systems and the conventional fuel-fired power

cycles. Manenti et al. [139] developed a dynamic model for solar power plants with storage. The

dynamic simulation optimized power generation and improved the net income of a concentrating

solar power plant. This optimization considered the market demand in real-time, storing superflu-

ous energy, and using the stored energy when necessary. Powell et al. [140,141] considered a solar

thermal power plant integrated with a two-tank-direct thermal energy storage system. They found

that the energy storage system led to a 64% increase in utilization of solar power with intermittent

supply. Onar et al. [142] studied the combination of wind, fuel cell, and ultra-capacitor systems for

energy production. The fuel cell and ultra-capacitor systems worked as a backup for the variations

in wind turbine power output to keep a reliable power production system. In the investigation, wind

power was the main source of energy. It also powered an electrolyzer that produced hydrogen for

the fuel cell during peak hours. In peak hours, when wind power was insufficient, the fuel cell and

ultra-capacitor systems provided the required additional power.

Despite the increased contribution of renewable power sources in reducing the CO2 emis-

sions from power plants, the global trend of CO2 emissions is still increasing. Consequently, more

restrictive regulations for CO2 emissions have been enforced or are under consideration [143–145]

to control the CO2 emissions. For instance, the US Environmental Protection Agency (EPA) re-

cently promulgated regulations under Clean Air Act Sections 111(b) and 111(d) for the CO2 emis-

sions from the US power industry. Existing natural gas and coal–fired power plants can emit up

to 1100 and 1400 lbs of CO2 per MWh energy generation. New power plants must reduce CO2

emissions by 20% from 2014 levels [143]. Current combined–cycle natural gas plants meet these

standards and they are about 30% below the emissions of most coal plants. Such large reductions

from coal plants lie well beyond the reach of plant efficiency improvements or other modest op-

erational changes and threaten decommissioning of existing plants and curtailing plans for new
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plants. In fact, coal consumption has declined in the US for many years and there are very few

new coal plants planned. These declines, however, stem from low–cost natural gas competition

and not from CO2 emissions controls. Low–cost natural gas is a recent develoment in the US but

is not a global shift in the energy landscape. Globally, coal is by far the most rapidly growing

source of primary energy [134]. Coal will continue to play a major role in power generation in

the US, even by EPA projections, and shows every sign of continuing a rapidly increasing role in

power globally. Global CO2 emissions must decrease by 60-80% to limit global climate change to

a 2 ◦C increase [146]. This is about twice as much as the total CO2 emissions from all forms of

power generation. Therefore, global climate change critically depends on finding ways to reduce

CO2 emissions from fossil power plants generally and from coal specifically. In this sense, fossil–

and specifically coal–based emissions reduction represents one of the most important elements of

climate change mitigation. No national or global climate change policy can likely succeed without

addressing this issue.

Carbon capture and storage (CCS) is a viable approach to achieve the target CO2 emis-

sion level. The literature for CO2 removal mainly considers three typical CCS technologies: post

combustion, pre-combustion, and oxyfuel [134]. Cryogenic technologies have also been consid-

ered for carbon dioxide removal and they have several forms such as an inertial carbon extraction

system, a thermal swing process, and cryogenic carbon capture with an external cooling loop (CC-

CECL) [147–150]. Many state of the art technologies for CO2 mitigation processes are energy

intensive. Thus, it is critically important to study the impact of CO2 capture processes on power

generation systems.

Kang et al. [151] studied an integrated system of energy production consisting of a coal

plant, a wind power facility, and a temperature-swing CO2 capture unit [151]. A natural gas

combustion turbine and heat recovery steam generator supplied heat for CO2 capture. The turbine

also supplied supplemental electricity when required. The study also considered demand response

in the form of storing CO2-rich amine solution during peak demand. They concluded that with an

optimized operation, 20% more profit is obtained compared to a heuristic procedure. Belaissaoui

et al. [152] explored the CO2 capture challenges for a gas turbine plant. The low concentration of

CO2 in a gas turbine power plant led them to consider membrane separation for CO2 capture. It was

found that the overall energy requirement is less than 205 kWh/ton CO2 with a highly selective
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membrane. Chalmers et al. [153] studied the flexibility added to power plants retrofitted with

CO2 capture by operating under different scenarios. They considered a post-combustion capture

process. The goal of investigation was to maximize profit by choosing the operation pattern in

response to electricity market prices. The scenarios that are considered are: (1) power plant shut

down; (2) using a CO2 capture system; and (3) bypassing the CO2 capture system. Cohen et

al. [154–156] considered the flexible operation of a CO2 capture unit integrated with a fossil-fueled

power plant. They used an amine-based CO2 capture process with the objective of maximizing

the profit of the hybrid system in response to electricity price volatility (incorporating spikes in

the power price). In comparison to a similar system without the spikes in power price [157],

flexible operation of the CO2 removal created higher operating profit. They also evaluated the

profitability of two flexible configurations for the operation of CO2 removal system under three 20-

year CO2 price paths and compared them with the operation of inflexible CO2 removal. Chalmers

et al. [158] studied the impacts of post-combustion capture on transient performance of coal-fired

power plants. They also differentiated between plants with CO2 capture and without CO2 capture

in the load-following capability, and recommended considering some constraints to power plant

start-up due to the post-combustion capture. Gerbelov et al. [159] explored the performance, cost

impacts, and feasibility of retrofitting an amine based post-combustion capture method for existing

power plants. Two sub-critical coal power plants and two natural gas combined cycle plants were

considered in the investigation. Net plant efficiency loss of the coal-fired and gas-fired power

plants were found to be 12% and 8%, respectively, based on the higher heating value (HHV). The

capital cost of both natural gas-fired and coal-fired power plants was explored and it was found that

natural gas-fired power plants require less capital costs because of lower CO2 concentrations in the

flue gas. The investigation also examined the effect of fuel price on the breakeven point (the point

at which the cost of electricity is equal for plants with and without Carbon Capture and Storage

(CCS) at a set price of CO2 emission).

Cormos et al. [160] assessed the techno-economic and environmental aspects of power

generation for an Integrated Gasification Combined Cycle (IGCC) power plant with and without

CCS. A pre-combustion method using gas-liquid absorption in physical solvents (Selexol) was

used for carbon capture. The study investigated IGCC with CCS from different aspects, including

plant capital cost, operational and maintenance cost, Levelized Cost of Electricity (LCOE), and
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CO2 capture. Cormos et al. [161] explored integration of CCS with both Pulverized Coal (PC)

power plants and IGCC plants. A post-combustion carbon capture method was used for PC plants;

however, for IGCC power plants, a pre-combustion method was used. It was found that energy

penalty for introduction of CCS, on the net energy percentage basis, is 8-9 % for PC power plants

and about 7 % for IGCC plants.

Some studies also considered using renewable energy sources to provide the energy re-

quirement of CO2 capture process or to efficiently utilize CO2 produced from power plants to adopt

more renewable energy. Khorshidi et al. [162] explored using auxiliary units fueled by biomass

to compensate for the energy loss of the CO2 capture process. They considered a combined heat

and power (CHP) production unit that used biomass as the fuel and found that a CO2 price of at

least $55/tonne CO2 or a biomass price of less than 1 $/Gj is required to cost-effectively capture

CO2 from both the coal plant and auxiliary biomass CHP unit. Mohan et al. [163] considered an

integrated system of an IGCC power plant and an enhanced geothermal system (EGS). The pur-

pose of the study was to extract geothermal heat by using CO2 produced from an IGCC plant as

the heat transfer fluid. In addition to the power produced from geothermal energy in an organic

Rankine cycle (OCR), power was also produced by expansion of CO2 in a high pressure turbine

before being re-injected to the reservoir. For a sample case, it was shown that such a hybrid system

was able to recover 74% of the energy consumption of the carbon capture and sequestration.

Although various methods have been developed for CO2 capture, the major drawback of

most of CO2 removal systems is the parasitic energy load. Jensen et al. [150] stated that the

average energy consumption of using oxy-combustion, absorbents, adsorbents, or membranes for

CO2 removal is 1.69, 1.72, 3.39, and 1.3 MJe/kg CO2, respectively. As mentioned previously, the

cryogenic carbon capture (CCC) process [164] is another technology for CO2 removal and is less

energy intensive compared to the aforementioned capture systems (an average of 0.7 MJe/kg CO2).

This process has some configurations that store energy in the form of liquefied natural gas (LNG).

This capability manages the energy loss of CO2 removal by using stored refrigerant to drive the

process during peak demand, transferring the reduced parasitic load to the grid to help meet the

demand, and regenerating the refrigerant during low-demand periods. In addition, the rapid-load-

change capability of the CCC enables conventional power generation systems to integrate more

easily with renewable intermittent power sources [164]. As renewable energy sources become
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a larger portion of the energy market, fossil-fueled generators that were originally designed for

baseline power production have to operate on a load-following basis, which results in increased

emissions and operational costs [165]. Thus, by adopting more renewable energy sources into

the power grid, the significance of rapidly responding to large fluctuations with energy storage

becomes critical to maintaining a reliable and cost-effective electric grid.

This investigation considers the grid-level responses of CCC-equipped systems. Most of

the research on integrated systems of power generation and carbon mitigation have only consid-

ered steady-state simulations. With steady-state simulation, the transient behavior of the inter-

mittent power sources and energy storage are neglected; however, with transient optimization,

time-shifting of the parasitic load of the carbon mitigation process can be considered, which can

help reduce the operating cost. Thus, the dynamic optimization of an integrated system including

conventional and renewable power plants with and without energy storage versions of the CCC

process is considered in this investigation. Two types of fossil–fueled power generation units are

considered in this dissertation: (1) load–following unit, and (2) baseline unit.

This chapter includes three sections; the first section provides an overview of the CCC

process. The next section presents the hybrid power generation system and the non-energy-storing

version of the CCC process. The final section discusses the simulation results for a simplified

hybrid system without energy storage. The simulations of a hybrid system with energy storage are

the focus of Chapters 5 and 6.

4.2 Non-energy-storing Version of the Cryogenic Carbon Capture (CCC)

The CCC process is a retrofit, post–combustion technology that captures CO2 in the flue gas

through desublimation; i.e. the CCC process cools flue gas from power generation units to the point

that CO2 desublimates. Other pollutants in the flue gas, such as mercury and hydrogen sulfide,

are also separated in the cooling process. The resulting solid is separated from the remaining

light gases. Solid CO2 is then melted, pressurized, and transported to underground containment

wells [147]. Two refrigeration cycles are used to accomplish the cooling in the CCC process

(Figure 4.1). The first refrigeration cycle (internal refrigeration loop in Figure 4.1) uses CF4. The

electricity demand associated with running this refrigeration cycle and other auxiliary equipment

in the CCC process is referred to as CCC plant electricity demand. The second refrigeration
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cycle (external refrigeration loop in Figure 4.1) uses liquefied natural gas (LNG), although other

refrigerants could be selected. The electricity demand associated to run the external refrigeration

cycle in the LNG production process is referred to as the LNG plant electricity demand. The

advantage of using LNG in the CCC process is that when it passes through the CCC process (stream

3 in Figure 4.1), it is vaporized so that heat is removed from the process. The vaporized LNG

(stream 4 in Figure 4.1) is then warmed up to higher temperatures in the LNG/mixed refrigerant

recuperator. The warm natural gas (stream 5 in Figure 4.1) can then be combusted to produce

power. Thus, the refrigerant is also the fuel which significantly reduces the operational costs of the

plant. However, only a fraction of the vaporized LNG is allowed for combustion so that oversizing

of the gas turbine is avoided. The decisions about the magnitude of power production from natural

gas and the time that gas power should be produced are made by the optimizer. Because a fraction

of the natural gas is burned in the gas turbine, natural gas is imported to the plant (stream 1 in

Figure 4.1) so that enough LNG is available for treating the flue gas in the CCC process.

Although the CCC process is able to integrate with both gas- and coal-fired power plants

independently, in this investigation it is assumed that the combination of them establishes a single

power generation unit and the lumped unit is equipped with the CCC process. Thus, the feed to

the CCC process has two sources: (1) flue gas from burning the coal for steam production (2) flue

gas from burning the natural gas in the gas turbine. A more in-depth analysis of CCC can be found

at [147–149, 164]

4.3 Modeling Framework for the Non-energy-storing Hybrid System

4.3.1 Model Equations

This section presents the model developed for the hybrid system of the power generation

unit and the CCC capture process. First, relationships for power generation from each source are

developed and are all presented in the unit of MW . The power production in the coal-fired steam

boiler (PST ) is calculated from a first order differential equation (Equation (4.1)) that relates the

power output (PST ) to the set point of the power output (PSP). This relation represents the transient

response of steam boilers when a change in the power output is required. The set point of the

steam boiler power output (PSP) is a decision variable and is optimized based on the economical
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Figure 4.1: Schematic configuration of the integrated system of power generation unit and the CCC process
without energy storage

evaluation of the hybrid system. The range of variation of PSP is considered between the nominal

capacity of the steam boiler and and 44% of this capacity. When integrating the CCC capture pro-

cess with existing power generation units, this range should be modified according to the capacity

of the steam turbine.

τ
ST dPST

dt
=−PST +KST PSP (4.1)

In this case, τST and KST are the time constant and gain, respectively, for power production

in the steam boiler. The time constant represents the time it takes to reach 63.2% of the total

change in steam boiler power output when there is a change in the set point. Gain is the ratio

of total change in the power output from the steam boiler and the magnitude of change in the set

point. An assumed value of 2 hours for the time constant represents the slow response of the steam

boilers to changes in set points in practice. A gain value of 1 is used in Equation (4.1) for the

steam boiler. It should be noted that reference to the power production in a steam boiler (PST ), in
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this investigation, is in fact the result of producing power in a turbine that is driven by the steam

generated in the boiler. Steam is generated from the heat content of the flue gas produced from

coal combustion (simple cycle). Exiting flue gas from a gas turbine can also be introduced to the

boiler to produce more steam and achieve the efficiency of a combined cycle. Thus, total power

output from the steam turbine (PST ) in the combined cycle is the summation of equivalent power

from exchanging heat by the flue gas generated from coal and natural gas combustion (Equation

(4.2)).

PST = PCT +PNGCC (4.2)

PCT and PNGCC are the power generated from the coal and natural gas flue gases, respec-

tively. PNGCC is dependent on the rate of natural gas combusted in the gas turbine, NGConv, (or

equivalently on the gas power production, PGT ) and is defined in (4.4). Either PCT or PGT can

be selected as the second decision variable and the other variable (as well as PNGCC) is calculated

from solving Equations (4.2) and (4.4) simultaneously. Similarly, mass flow rates of combusted

coal (C) and natural gas (NGConv) can be selected as the second decision variable. In this investi-

gation, flow rate of the natural gas combusted in the gas turbine is selected as the second decision

variable. Power generated in the gas turbine, PGT , is then calculated from Equation (4.3):

PGT = NGConv
εg∆Hg (4.3)

where εg, ∆Hg are the efficiency of power production in the gas turbine and enthalpy of combustion

of natural gas, respectively. The values assumed for these two parameters are 0.3275 and 53.89

MJ/kg, respectively [166]. It should be noted that all equations involving flow rates are presented

on a mass basis with units of kg/hr.

Power production from the steam generated from the natural gas combined cycle is ob-

tained from Equation (4.4). In deriving this equation, it is assumed that the heat transfer from the

flue gas to the boiler feedwater has an efficiency of 88% (εSB). It is also assumed that the steam tur-

bine is 41.6% efficient (ηST ). Ratio of the mass flow rates of the flue gas to natural gas combusted

in the gas turbine is presumed to be 42.56 kg/hr (Equation (4.5)). These assumptions are based on

the simulation studies for a NGCC power plant with a single reheat 16.5 MPa/566 ◦C/566 ◦C cycle
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and an overall combined cycle efficiency of 50.2% [166]. Thus, the overall power production in

the steam turbine is the product of specific enthalpy change of the flue gas (∆HNG
FG ), mass flow rate

of the flue gas produced from natural gas combustion (FGNG), efficiency of the heat exchange in

the boiler (εSB), and efficiency of the steam turbine (ηST ):

PNGCC = ∆HNG
FG FGNG

ε
SB

η
ST (4.4)

NGConv =
FGNG

42.56
(4.5)

As mentioned previously, solving Equations (4.2) and (4.4) simultaneously returns the

value of PCT . An equation similar to Equation (4.4) is then used to calculate the mass flow rate of

the flue gas from the combustion of coal (Equation (4.6)):

FGC =
PCT

εSBηST ∆HC
FG

(4.6)

In this case, FGC and ∆HC
FG are the mass flow rate of the flue gas from coal combustion

and specific enthalpy change of the flue gas, respectively. It is also assumed that 10.93 kg/hr flue

gas is produced from the combustion of 1 kg/hr of coal (Equation (4.7)).

C =
FGC

10.93
(4.7)

All these assumptions are based on the simulated results from [166] for a subcritical pul-

verized coal power plant that uses a single reheat 16.5 MPa/566 ◦C/566 ◦C cycle and has an overall

plant efficiency of 36.8%. Table 4.1 summarizes most of the data used in this investigation.

Although flue gas produced in the gas turbine can be completely directed to the boiler, it is

assumed that only a fraction of it is used for excess steam generation in the boiler. This constraint

addresses the limitation of the steam boilers in utilization of the flue gas in a combined cycle. The

flow rate of the flue gas directed to the steam boiler is limited to a flow rate that can potentially

produce sufficient steam to generate power up to 20% of the assumed upper bound for the steam

turbine capacity and is calculated from Equations (4.8) and (4.9). It should be noted that the
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Table 4.1: Summary of the input parameters

Parameter Value

Thermal efficiency of boiler, εSB 0.88

Efficiency of the steam turbine, ηST 0.416
Specific enthalpy change of the flue gas
from coal combustion, ∆HC

FG, (MJ/kg) 2.335

Efficiency of the gas turbine, εg 0.3275
Enthalpy of combustion of natural gas

(HHV), ∆Hg (MJ/kg) 53.89

Specific enthalpy change of the flue gas
from natural gas combustion, ∆HNG

FG (MJ/kg) 0.587

Overall efficiency of coal–fired power plant 36.8%

Overall efficiency of the NGCC power plant 50.2%
Work of compression for natural gas

compressor (kWh/(kg inlet)) or (GJ/tonne CO2) 0.051 (0.1656)

Work of compression for mixed refrigerant
compressor (kWh/(kg inlet)) or (GJ/tonne CO2) 0.077 (0.1818)

Electricity demand of the CCC for treatment
of the flue gas (coal combustion)(GJ/(tonne CO2 captured))

0.389

Electricity demand of the CCC for treatment
of the flue gas (gas combustion)(GJ/(tonne CO2 captured))

0.428

LNG demand to process the coal flue gas
(kg/(tonne CO2 captured))

856

LNG demand to process the gas flue gas
(kg/(tonne CO2 captured))

685

numerator of Equation (4.8) is normalized with the capacity of the gas turbine to keep the units of

both sides on a mass basis.

NGConv,max =
GPCC

max
GT cap NGConv (4.8)

FGNG,max = 42.56NGConv,max (4.9)
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Table 4.2: Coal properties

Component Weight percentage
Carbon 48.18

Hydrogen 3.310
Oxygen 11.87
Chlorine 0.01
Sulfur 0.37

Nitrogen 0.7
Ash 5.32

Moisture 30.24

NGConv,max represents the maximum flow rate of combusted natural gas, of which the cor-

responding produced flue gas ,FGNG,max, is directed to the steam boiler. The maximum permitted

power production in the combined cycle and the capacity of the gas turbine are represented by

GPCC
max, GT cap, respectively.

Next, electricity demand of the CCC and LNG production facilities and the LNG require-

ment to treat the flue gas are calculated. While the power production from natural gas in a com-

bined cycle is limited, all the flue gas produced in the gas turbine should be treated in the CCC

process. Thus, total electricity demand of the CCC process and the required LNG to treat the flue

gas resulting from the combustion of natural gas are based on NGConv and is calculated from the re-

arrangement of Equation (4.5). It is assumed that the treatment of hot flue gas from the gas turbine

and the cold flue gas from the steam boiler requires the same amount of electricity and LNG. Ac-

cording to [36], treatment of the flue gas produced from coal and natural gas combustion requires

0.389 and 0.428 GJ per tonne of captured CO2, respectively. Adopting the combustion reaction

mechanisms used by [151] for a subbituminous Wyoming Powder River Basin coal and natural gas

with the compositions given in Tables 4.2 and 4.3 [167] results in 851.23 and 545.47 kg/hr CO2

production from one MW power generation from coal and natural gas, respectively. With a 90%

capture rate, the electricity demands of the CCC process for treatment of the flue gases generated

from coal and natural gas combustion are 0.083 and 0.058 MW per one MW generated power from

each source, respectively. The overall electricity demand for the CCC facility is then calculated

from Equation (4.10):

DCCC = 0.083PCT +0.058PNGCC (4.10)
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Table 4.3: Natural gas properties

Component Mole percentage
Methane 83.4
Ethane 15.8

Nitrogen 0.8

According to [36], required LNG to process the flue gases from coal and natural gas com-

bustion are 856 and 685 kg per tonne CO2 captured. Similar to the calculation of the CCC elec-

tricity demand, LNG demand for treatment of the flue gas from combustion of coal and natural gas

are 656.2 and 336.4 kg/hr per one MW generated power from each source, respectively. Thus, the

overall LNG demand is calculated from Equation (4.11):

LNGR = 656.2PCT +336.4PNGCC (4.11)

The work of compression of the natural gas (DNG,Comp) and mixed refrigerant (DMR,Comp)

compressors are 0.051 and 0.077 kW per kg/hr of the inlet streams, respectively [36]. After unit

conversion, these lead to the following equations:

DNG,Comp = 5.1×10−4NGCCC (4.12)

DMR,Comp = 7.7×10−5MR (4.13)

In this case, NGCCC and MR are the mass flow rates of natural gas coming from the CCC

process and mixed refrigerant, respectively. Total electricity demand of the LNG production facil-

ity, DLNG, is the summation of DNG,Comp and DMR,Comp (Equation (4.14)).

DLNG = DNG,Comp +DMR,Comp (4.14)

Total electricity demand from the CCC and LNG production facilities, Dplant , is then cal-

culated by adding up the individual components (Equation (4.15)):

Dplant = DCCC +DLNG (4.15)
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Total electricity demand is a summation of the CCC and LNG plants, Dplant and residential

area, DRes, presented by Equation (4.16). Residential electricity demand assumed in this investi-

gation is an input to the optimization problem.

DTot = Dplant +DRes (4.16)

The overall power generation is also calculated from Equation (4.17):

PTot = PCT +PGT +PNGCC +PW (4.17)

The variable PW represents the power generated from the wind and is considered an input

to the model.

Next, mass and energy balance equations used in this investigation are presented. The

amount of the LNG that is produced in the recuperator is the sum of the natural gas imported from

the pipeline and natural gas that comes from the CCC plant. Thus, total LNG production (also

equals the value of NGTot shown in Figure 4.1 on a mass basis) is calculated from Equation (4.18):

LNGProd = NGPL +NGCCC (4.18)

Deriving all equations on a mass basis also results in the equality of NGTwophase, NGOnephase,

and LNGR. This conclusion is used in deriving a relationship between NGCCC, LNGR, and NGConv.

As a result, it is obvious from Figure 4.1 that natural gas from the CCC plant, NGCCC, equals the

difference between mass flow rates of the LNG requirement, LNGR, and natural gas combusted in

the gas turbine ,NGConv:

NGCCC = NGOnephase−NGConv (4.19)

When there is no energy storage, LNG production also equals the mass flow rate of LNG

requirement (Equation (4.20)):

LNGProd = LNGR (4.20)

72



While combustion of the natural gas in the gas turbine is approximately instantaneous, an

equation similar to Equation (4.1) is considered for the natural gas imported to the plant (Equation

(4.21)). This equation represents the dynamic response of the system to changes in set point of

imported natural gas.

τ
NG dNGPL

dt
=−NGPL +KNGNGPL,SP (4.21)

where NGPL,SP is the set point of the natural gas imported from the pipeline and is a deci-

sion variable. Time constant and gain of the first order model used in this equation are represented

by τNG and KNG, respectively. A time constant of 5 minutes and a gain value of 1 are assumed for

the import of natural gas.

An energy balance over the recuperator defines the relationship between the natural gas

imported (NGPL) and recirculated in the system (NGCCC). It also defines the trend of variation of

mass flow rate for the mixed refrigerant (MR). Total energy gain from the cold streams entering

the recuperator is obtained from Equation (4.22):

Qg = NGTwophase
∆H1 +MR∆H2 (4.22)

where ∆H1 is the enthalpy difference of the two phase gas stream exiting the CCC plant

and warm natural gas after the recuperator and is equal to 299 kJ/kg. ∆H2 is also the enthalpy

difference of the cold mixed refrigerant entering the recuperator and is equal to 620 kJ/kg.

Total energy loss from the hot streams entering the recuperator is also obtained from Equa-

tion (4.23):

QL = NGTot
∆H3 +MR∆H4 (4.23)

where ∆H3 is the enthalpy difference between the warm natural gas that is liquefied and

the LNG produced in the plant and is equal to -582 kJ/kg. ∆H4 is also the enthalpy difference of

the hot mixed refrigerant entering the recuperator and is equal to -9 kJ/kg.

The values assumed for ∆H1, ∆H2, ∆H3, and ∆H4 are based on the results obtained at [147]

with the assumption that temperature and pressure of the entering and exiting streams to and from

the recuperator are constant. Results presented in [168, 169] propose a design for a plate heat
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exchanger that the temperature and pressure remain constant despite the fluctuations in inlet and

outlet conditions of the heat exchanger. These fluctuations occur because of the process transients

introduced by energy storage and specifically by large swings in LNG production rates in response

to the variations in electricity demand and wind power. The proposed design is able to minimize

the transient impacts of energy storage and LNG production on the operating conditions of the heat

exchanger. Thus, the recuperator considered in this study has a steady–state performance and is

very responsive to fluctuations in the inlet and outlet conditions of the recuperator.

The summation of Qg and QL should be zero, assuming no heat loss to the environment

(Equation (4.24)).

Qg +QL = 0 (4.24)

Finally, the objective function is defined as follows:

Pro f it = (DRes−DPlant)PE − (NGPL)PN−PCC (4.25)

where PE , PN , and PC represent energy price ($/MWh), natural gas price ($/kg), and coal

price ($/kg), respectively. An hourly energy price is also assumed in this study. This investigation

focuses on operating costs, though levelized capital costs could be introduced to the cost functions

if investment decisions are to be included.

4.3.2 Controlled variable

The overall power generation from the coal, gas, and wind should always match the sum

of the electricity demands for the residential users and the CCC and LNG production facilities, as

shown with Equation (4.26)

PTot = DTot (4.26)

To achieve this goal, excess energy production is defined as shown in Equation (4.27) and it

is considered as a controlled variable with high and low set point values of zero. This also permits
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the assignment of a higher penalty for underproduction of power. Selection of a value of zero for

the high and low set points of excess energy production highlights that neither overproduction nor

underproduction of power is an optimal solution in practice.

PEx = PTot−DTot (4.27)

4.3.3 Constraints

Power produced in the gas turbine should always be less than its capacity.

PGT ≤ GT cap (4.28)

Steady state simulations have shown that the combined electricity demand of the LNG

and CCC plants is 15-20% of the power generated in the power plant [147]. A value of 20% is

adopted for Dplant,max in the results presented in this Chapter [170] while a lower value of 15% is

considered for the results presented in Chapters 5 and 6 [36]. However, the optimization results

shown in Section 4.5 demonstrate that Dplant is always less than 15% of PSP,Max.

Dplant ≤ Dplant,maxPSP,Max (4.29)

After formulating the system, it is necessary to set up an optimization framework to in-

crease the effectiveness of the hybrid system. The optimization framework used in this system

benefits from an objective function in the form of an `1-norm (2.5). In this equation, a desired ob-

jective function for the problem (Equation (4.25)) is added to the expression presented by Equation

(2.5a) and forms the overall objective function. The mathematical equations presented by Equa-

tion (2.5) are used to tune the model to obtain satisfactory results; i.e., in each simulation, variables

cy,cu,c∆u are adjusted such that smooth results are observed in the trend of the decision variables.

Thus, these variables are the tuning parameters for the model. High penalization factors are also

assigned for the deviation of the controlled variable from the desired set point. The penalization

factors are wh and wl to penalize over and under production of power, respectively.

The set of equations discussed is implemented in the APMonitor Modeling Language [29]

and solved either with an interior point solver (IPOPT) [71] or an active set solver (APOPT [140,
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141]. More information about how to implement an optimization in the APMonitor Modeling

Language can be found in [35].

4.4 Model Implementation

In this section, the model developed for the hybrid system of power generation and the

non-storing version of the CCC process is implemented with a set of assumptions and input data.

In this case, it is assumed that power production in the coal–fired generation unit is based on a

simple cycle; i.e. FGNG,max is zero which results in PNGCC be equal to zero).

4.4.1 Model Inputs

In this study, the power output of ten wind power stations, each comprising multiple wind-

mills, in southern California, USA is considered along with coal and gas power generation units.

The maximum actual power output from the wind stations is 300 MW while steam boiler has a

capacity (PSP,Max) of 1200 MW . The steam boiler considered in this investigation is also able to

follow the electricity load at a maximum change rate of 7% per minute [171]. A capacity of 240

MW is considered for the gas turbine. A more accurate analysis of the size of the gas turbine is

made by considering capital cost of the equipment and is outside the scope of this dissertation.

The electricity demand profile adopted for this section is related to the forecasted data for a

zone in southern California, USA. Electricity demand data is taken from [172]; this is the predicted

data for 2022 with a maximum of 1200 MW . The assumed data for these variables are typical for

most residential areas. The wind power [173] and electricity power prices [174] are represented by

2006 and 2009 data, respectively. Two time periods are selected to compare the effect of seasonal

changes on electricity demand and weather condition. The first time period is between July 18th

and July 20th (summer case), when the peak electricity demand of the year is predicted to occur.

The second time period is between January 25th and January 27th (winter case), when wind power

had the highest standard deviation among all possible three consecutive day time horizons in 2006.

Trends of variation of electricity demand data and energy price are presented in Figures 4.2 and

4.3 for the summer and winter, respectively. Trend of wind power for each scenario is shown along

with the optimization results shown in Section 4.5.
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Figure 4.2: 2022 forecasted electricity demand data for a zone in southern California, USA (Summer case)
[172].

The simulation time horizon considered in this investigation is 72 hours with one hour time

discretization.

4.5 Optimization Results

4.5.1 Comparison Between Summer and Winter Results

The main results of the optimization of the integrated system without energy storage for

both summer and winter cases are presented in this section. The summer case result, displayed in

Figure 4.4, shows that the total power produced in the system is always greater than or equal to the

total electricity demand. The total excess power over the time horizon is approximately zero in this

scenario. Coal power is the main source of the electricity generation, while gas power is produced
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Figure 4.3: 2022 forecasted electricity demand data for a zone in southern California, USA (Winter case)
[172].

during peak hours to meet the total electricity demand. Whenever wind is available, it is used first

to meet the demand. Coal power is mainly dispatched after the wind while gas power is mostly

produced in periods with high electricity demand. Optimization shows a maximum change rate of

0.3% per min for the load in the steam boiler that is less than the maximum anticipated change rate

of 7% per minute. Figure 4.4 shows that the combined LNG and CCC electricity demands satisfy

the constraint described in Section 4.3.3.

For the winter case (shown in Figure 4.5), the electricity demand decreases significantly and

wind power is more readily available than in the summer case. In fact, there are times (such as the

period between hours 26 and 29) when wind power can fully meet the total electricity requirement

of the residential area and the CCC and LNG plants. Therefore, power production from coal and

gas are not needed and are reduced to zero. Wind power also has a high rate of fluctuation in
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Figure 4.4: Power vs. electricity demand profile (summer case)

the winter. Thus, when wind power is not sufficient to meet the total electricity demand or when

it is fluctuating frequently, both gas and coal power are used to compensate for the lack of wind

power. Gas power is used as much as possible during peak hours and when wind power is not

sufficient. After reaching the maximum allowable limit for gas power, coal power is used to meet

the electricity demand. The total excess power over the time horizon is less than 0.6% in this

scenario. The maximum rate of load change in the steam boiler (0.2% per min) is also less than the

maximum anticipated change rate of 7% per minute. Similar to the summer case, the combined

electricity demand for the LNG and CCC plants is less than the assumed upper bound (240 MW ).

The range of operation of the steam boiler used in this study is considered to vary from zero

to full capacity. While it is important to show the concept of more wind utilization by assuming a

lower limit of zero for the steam boiler, the zero limit is not practical. The lower limit of the steam

boiler is selected to be zero to add enough flexibility to the hybrid system so as to not produce
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Figure 4.5: Power vs. electricity demand profile (winter case)

excess power. A longer time frame and economical evaluations are needed to find an appropriate

boiler capacity. In that case, the simplifying assumption for the lower limit of power output from

the steam boiler can be easily modified. Adding the energy storage capability of the CCC process

is another viable option to make the rate of change of the boiler smoother [36].

Figure 4.6 shows trends of the natural gas from the pipeline for both summer and winter

cases. This figure illustrates how more natural gas is taken from the pipeline during peak hours and

when wind power is insufficient. Two reasons are attributed for taking natural gas from pipeline

in peak hours: (1) more LNG is required to treat the flue gas of the power plants (2) a fraction of

natural gas is combusted in the gas turbine and the amount of natural gas lost due to combustion

should be compensated. As mentioned before, when wind power is not sufficient to meet the

electricity demand, a combination of gas and coal power is used to achieve this goal. However, the

steam boiler’s response to the intermittent behavior of the wind power is slow and gas power is used
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Figure 4.6: Natural gas imported to the plant

more frequently in the winter as the rate of variation of wind power is greater in the winter than

the summer. The overall amount of the natural gas taken from the pipeline over the optimization

time horizon is approximately 100% more in the winter case than the summer case.

The same trend is observed for the LNG production rate (Figure 4.7). During off peak

hours, less LNG is required and it is produced from the recirculating natural gas inside the plant

(stream 7 in Figure 4.1). Since more LNG is required during peak hours, the necessary LNG is

supplied from both pipeline and recirculating natural gas. The overall amount of LNG produced

inside the plant for the winter case is 80% less than the summer case. This difference is attributed

to the higher penetration of wind power into the power production unit in the winter. In addition,

gas power is produced more than the coal power in the winter case. As CO2 emissions from

the gas combustion are less than from coal combustion, smaller amounts of LNG are required to

run the CCC process during the winter. Thus, when more wind power is adopted into the power
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Figure 4.7: LNG production in the system

generation units, the LNG production rate decreases. The same behavior is observed for the sum

of the electricity demands for the LNG and CCC plants.

The average operational profit obtained from the integrated system, assuming a constant

natural gas price, is approximately $21k/hr for the summer case. The average operational profit

for the winter case is approximately $13k/hr. The higher profit obtained for the summer case is

expected as larger variation in the electricity price creates more benefit from the hybrid system.

4.5.2 Sensitivity Analysis for Wind Power Adoption

Finally, a sensitivity analysis is implemented to compare the effect of different rates of wind

power adoption on the utilization of coal and gas power. For the cases outlined in this section, the

winter data and a wind adoption factor (α) are used to define the fraction of the available wind

power adopted in power generation. When α = 1, all of the available wind power is adopted to
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meet the electricity demand, while α = 0.5 means that only half of the available wind power is

used. As shown in Figure 4.8, adopting more wind power causes less coal power production.

However, gas power has higher influence at higher wind power adoption rates; this is due to its fast

response to the intermittent behavior of the wind power. Using more gas power is advantageous

as coal power produces more CO2 and using more wind and gas power results in lower electricity

demands for the LNG and CCC plants. Conversely, lower adoption of the wind power requires

more power to be produced from coal to meet the total electricity demand.

The impact of the adoption factor on the profitability of the hybrid system is shown in

Figure 4.9. The revenue of sale of electricity to residential consumer is constant at all values of

α . Coal cost and the electricity cost to run the LNG and CCC plants decrease by adopting more

wind power into the power generation units. However, gas cost increases by increasing the wind

power adoption factor. This conclusion is expected because gas power, as opposed to coal power,

is used more to meet the total electricity demand when more wind power is adopted. It is observed

from Figure 4.9 that at α = 0.66 the integrated profit over the simulation time is at a maximum.

This means that at this value, a combination of the three power sources lead to the maximum

profit obtainable from this system for the winter case. Thus, further adoption of the wind power

does not increase profitability in the assumed hybrid system. The average profit obtained from

the hybrid system at a wind adoption factor of α = 0.66 is $14.5k/hr. The natural gas price used

to obtain results in Figure 4.9 is an average value of 5.74 $/Mcf. However, the same trend in the

profitability is obtained with a natural gas price ranging from 3.54 to 18.25 $/Mcf. This price range

is sufficiently wide to capture the possible growth in the natural gas price in 2022 [175,176] and is

sufficient for the purpose of this study. Change in the coal price from 12.65 $/ton to 17 $/ton (the

projected price for the Powder River Basin coal in 2022) also leads to the same conclusions.

4.6 Conclusion

The impact of the CCC process (a post-combustion CO2 removal process) on fossil-fueled

power plants is considered in this chapter. The CCC process is considered as a response to the

tightening restrictions on CO2 emission from fossil-fueled power plants (such as the new regula-

tions recently unveiled by the EPA in the Clean Power Plan). The fast response of the CCC process

to electricity demand helps utilize more renewable energy sources on the grid, which emits less
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Figure 4.8: Impact of wind power adoption factor on power production from gas and coal (winter data)

CO2. The effects of seasonal variations in electricity demand and wind availability are investigated

by considering the summer and winter cases. The proposed hybrid system is able to meet the total

electricity demand. All of the available wind power is utilized in this study to meet the electricity

demand. The operating profit obtained from the proposed system for the summer case is $21k/hr,

while the winter case profit is approximately $13k/hr. The larger availability of wind power in

the winter leads to 100% more intake of natural gas to the plant than in the summer case. LNG

production over the optimization time horizon decreases by 80% for the winter case.

A sensitivity analysis examines the change in operating strategy of the proposed system

with respect to the wind power adoption factor (α ). At higher values of α , coal power utiliza-

tion decreases while gas power utilization increases. At α = 0.66, the profit obtained to run the

integrated system in the winter is at a maximum.

84



0 0.2 0.4 0.6 0.8 1
950

1000

1050

1100

1150

1200

1250

1300

1350

Maximum Profit (α=0.66)

Wind Adoption Factor (α)

R
ev

en
ue

 (
k$

)

 

 

Total Electricity Revenue

Revenue − (LNG & CCC Electricity Costs)

Revenue − (Coal, LNG & CCC Electricity Costs)

Profit = Revenue − (Natural Gas, Coal, LNG & CCC Electricity Costs)
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The hybrid system of a load–following power generation unit and the CCC process with

the associated energy storage facilities is addressed in Chapter 5. Furthermore, the impact of the

CCC process on a baseline power plant is the focus of Chapter 6.
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CHAPTER 5. INVESTIGATING THE IMPACT OF ENERGY-STORING CRYOGENIC
CARBON CAPTURE ON POWER PLANT PERFORMANCE

5.1 Introduction

As mentioned in Chapter 4, the CCC process requires two refrigeration loops that consume

most of the energy in running the compressors. However, refrigerant can be generated during non-

peak hours and stored in insulated vessels that save the refrigerant for peak hour usage, thereby

replacing the compressor energy with the stored refrigerant. This causes the refrigerant production

rate to decrease during peak hours, which decreases the energy demand required by the CCC for

as long as the stored refrigerant is available. Therefore, more power is available during peak

hours relative to the baseline coal boiler rated capacity. Generating the refrigerant during non-peak

hours, when electricity is cheaper, also results in higher profits. In this investigation, storage of

only one of the refrigerants is considered as it provides more energy during the recovery mode.

The refrigerant considered for this purpose is LNG, although others could be selected.

In addition, the LNG generation and storage cycle primarily involves compressors and

heat exchangers; therefore, the storage/recovery or load changing response time is fast (seconds)

compared to those of the steam boilers (hours). The faster energy storage response time is well

matched to intermittent sources like wind turbines. Therefore, this energy storage system enables

the steam boiler to follow rapidly changing loads. Storage capacity of LNG vessels also allows

scaling from the proposed energy storage to large-scale systems.

The hybrid system of power generation units and energy-storing version of the CCC process

is shown in Figure 5.1. To better represent the storage and recovery modes of operation, a stream

(stream 6 in Figure 5.1) bypasses the tank. The storage tank allows natural gas to be imported from

the pipeline and converted to LNG during periods with low electricity prices. The fraction of the

produced LNG required to run the CCC process during off peak hours directly flows toward the

process through the bypass stream. The excess LNG flows to the tank inlet (stream 5 in Figure
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5.1). During peak hours or periods with expensive electricity prices, LNG is supplied from two

sources: (1) the storage tank (2) the liquefaction of the recirculating natural gas. As for the case

study without energy storage, the LNG directed to the CCC process (stream 8 in Figure 5.1) is

vaporized so that heat is removed from the process. The natural gas coming from CCC (stream 9

in Figure 5.1) has sufficient cooling potential to be used to liquefy a fraction of the recirculating

natural gas (stream 13 in Figure 5.1). Thus, by passing the cold natural gas coming from the CCC

(stream 9 in Figure 5.1) through the LNG/mixed refrigerant (MR) recuperator, heat is recovered

from the warm recirculating natural gas (stream 13 in Figure 5.1). Therefore, a fraction of the

required LNG for running the CCC process is supplied from the recirculating natural gas. The rest

of the required LNG is supplied from the tank (stream 7 in Figure 5.1). Thus, LNG production

is ramped down during peak hours by using an LNG storage tank; i.e. the parasitic loss of the

mixed refrigerant compressor decreases in peak hours or when electricity is expensive. However,

it should be emphasized that at any given time, either the storage or recovery mode is always in

operation. The combination of the LNG storage tank, LNG/MR recuperator, mixed refrigerant

compressor, and natural gas compressors used in LNG production is referred to as the LNG plant.

Another option to decrease energy consumption in the LNG plant is to export a fraction of

the recirculating natural gas to the pipeline (stream 1 in Figure 5.1) and avoid processing it in the

LNG/MR recuperator. However, the pressure of the natural gas before the natural gas compressor

is approximately 11 bar and the pressure of the pipeline natural gas is approximately 55 bar; thus,

the pressure must be increased to pipeline pressure if natural gas is to be exported. A pressure

increase is implemented in two stages in this study: (1) in the natural gas compressor (from 11 to

37 bar) and (2) in the pipeline compressor (from 37 to 55 bar). The pressure increase in the natural

gas compressor should always occur, even if natural gas is not exported to the pipeline. However,

the pressure increase in the pipeline compressor does not significantly increase the parasitic loss of

the plant (approximately 3.2 MW). The exported natural gas also offers a lower CO2 concentration

and is more pure than the imported natural gas because of the purification that occurs through

the refrigeration cycle. The natural gas export is a cost saving measure for the integrated system

as it recovers part of the operating costs for unused natural gas. However, the price value of the

more pure natural gas is the same as the natural gas from the pipeline in this investigation and

is not awarded extra credit for the purification. This is mainly because of the unwillingness of
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Figure 5.1: Schematic configuration of the integrated system of power generation unit and the CCC process
with energy storage

the utility contractors to buy back natural gas at a higher price. In other words, if natural gas is

to be simultaneously purchased or sold to utility contractors, the sale and purchase price will be

equal. This study assumes constant natural gas price. Decisions about whether natural gas should

be exported or imported at each time step are based on the economic evaluation of the objective

function.

The focus of this chapter is on the optimization of the hybrid system of power generation

units and the CCC process with consideration of the energy storage of the capture system. The

coal–fired power plant considered in this chapter is capable to follow the electricity demand load

with a maximum change rate of 7% per minute. The remainder of this chapter is divided into four

sections; in the first section, an example case study is discussed to demonstrate the concept of peak-

shaving of the electricity demand by using an energy storage system. Then, some of the equations

developed in chapter 4 are modified to account for the energy storage and export of natural gas to
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pipeline. Next, the inputs for this hybrid system are presented. Finally, simulation results for the

integrated system are discussed.

5.2 Example Case Study for Energy Storage Concept

In this section, an example case study is developed to demonstrate the energy storage con-

cept. The main power generation unit output is assumed to be constant in this case. Excess energy

is stored during off-peak hours or when more energy is available than the required electricity de-

mand. The stored energy is used during peak hours to meet the higher electricity demand. The

objective is to minimize the power production unit output. This goal is obtained by efficiently

using the energy storage system to meet the cyclical demand cycle that is typical for a grid-scale

power distribution system. The assumed demand profile has a periodic form that is typical for both

industrial and residential areas. As energy storage and energy recovery are not coincident, slack

variables are used in this example case to help the optimizer switch between energy storage and

energy recovery. The time horizon considered for this simplified case is 24 hours with 20 minute

time discretization.

The equations used to model this simplified case are given below. These equations represent

a simple power dispatching system and demonstrate the concept of peak-shaving of the electricity

demand by using an energy storage system.

min P (5.1a)

s.t.
δ I
δ t

= S · ε−R (5.1b)

S = P−D+S2 (5.1c)

R = D−P+S1 (5.1d)

P−D = S1−S2 (5.1e)

S1,S2 ≥ 0 (5.1f)

S1×S2 ≤ 0 (5.1g)
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P+R−S≥ D (5.1h)

I ≥ 0 (5.1i)

where P,D,S,R and I represent power production, electricity demand, stored energy, recovered

energy, and inventory of stored energy, respectively. S1 and S2 are slack variables to help switch

between energy storage and energy recovery and are constrained to be positive. The efficiency

loss during storage of energy is represented by ε . Equation (5.1a) defines the objective function.

Equation (5.1b) represents the energy balance for the energy storage system. Equations (5.1c) and

(5.1d) represent the magnitude of the stored and recovered energy, and Equation (5.1e) defines

the magnitudes of S1 and S2. Equations (5.1f) and (5.1g) ensure that storage and recovery modes

do not operate simultaneously (either S1 or S2 or both should be zero during the time horizon).

Equation (5.1h) guarantees that power supply from power production and energy recovery, with

consideration of the storage of energy during off peak hours, is always greater than the electricity

demand. Equation (5.1i) ensures that energy inventory is always greater than or equal to zero.

According to the optimization framework proposed previously, Equation (5.1c) to (5.1e) serve as

the equality constraints (Equation (2.5c)) while and Equation (5.1f) to (5.1i) serve as the inequality

constraints (Equation (2.5d)).

When S2 is zero, S1 is equal to P−D, according to Equation (5.1e). Consequently, S

equals excess energy (P−D) based on Equation (5.1c) and R equals zero in agreement with Equa-

tion (5.1d). Thus, this case represents the storage mode, and the inventory of the storage system

increases according to Equation (5.1b). When S1 is zero, S2 becomes D−P from Equation (5.1e).

Consequently, R equals D−P from Equation (5.1d) and S equals zero. Thus, this case represents

the recovery mode, and the inventory of the storage system decreases according to Equation (5.1b).

Results of the simplified case are presented in Figure 5.2. As shown in the figure, when

power generation is more than the required electricity demand, energy is stored and the energy

inventory of the storage system increases. When electricity demand is greater than the power

production, energy is recovered from storage and energy inventory in the storage system decreases.

Slack variables show consistent trends with these findings. This example case demonstrates the

energy storage optimization concept used in the more detailed case of power production with CCC.
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Figure 5.2: Results for the simplified case of energy storage

5.3 Modeling Framework for the Energy-Storing Hybrid System

5.3.1 Governing Equations

This section considers the modification of some of the equations developed in Chapter 4 to

account for the energy storage and export of natural gas to pipeline. Except for the equations and

figures that are modified in this chapter, similar relationships used in Chapter 4 are used for the

hybrid system with energy storage.

In the system considered in this chapter, the flow rate of natural gas exported to the pipeline

is deducted from the total recirculating natural gas (NGTot). As all relations are expressed on a mass

basis, NGTot also equals LNGProd . Thus, total LNG production should also be modified (Equation

(5.2)). The energy balance over the recuperator is also modified accordingly.

LNGProd = NGPL +NGCCC−NGEXPT (5.2)
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In this case, NGEXPT represents the natural gas exported to the pipeline (kg/hr) and is a

decision variable. Produced LNG also equals the summation of the LNG to the tank and the LNG

bypassing the tank Equation (5.3):

LNGProd = LNGTo Tank +LNGBY P (5.3)

In Equation (5.3), LNGTo Tank and LNGBY P represent the LNG directed to the tank and the

amount that bypasses it. LNGTo Tank is also a decision variable in the hybrid system with energy

storage. LNG from the tank is calculated from a mass balance at the tank outlet Equation (5.4):

LNGFrom Tank = LNGR−LNGBY P (5.4)

A dynamic mass balance equation is also developed in Equation (5.5) for defining the

inventory of tank, LNGTank:

d(LNGTank)

dt
= LNGTo Tank−LNGFrom Tank (5.5)

The work of compression of pipeline compressor (DNG,Pipe) is 0.01 kW per kg/hr of the

inlet stream [36] and is based on the results obtained previously [147, 164]. After unit conversion,

this leads to the following equation:

DNG,Pipe = 1×10−5NGEXPT (5.6)

The total electricity demand from the CCC and LNG production facilities, Dplant , is then

calculated from Equation (5.7):

Dplant = DCCC +DNG,Comp +DMR,Comp +DNG,Pipe (5.7)

The profit function used in this investigation is also modified to account for the export of

natural gas Equation (5.8).

Pro f it = (DRes−DPlant)PE − (NGPL−NGEXPT )PN−PCC (5.8)

92



An hourly energy price is also assumed in this analysis. As mentioned before, the credit

given to export of the natural gas is considered to be the same as the purchasing price of the

imported natural gas. The electricity demand profile is an input to the model and is not a decision

variable. Revenue obtained from selling the electricity (first term in the right hand side of Equation

5.8) is constant in all scenarios considered in Section 5.5. Thus, the optimizer actually tries to

optimize the profit function from the remaining expressions in Equation 5.8. Using the electricity

demand in the profit function, however, would provide a comparison basis for the profitability of

the hybrid system.

A time horizon of eight days with one hour time increments is considered for profit max-

imization. By removing the boundary conditions, the performance of the three middle days rep-

resents an infinite time horizon. Because of the complexity of the model and the large number of

variables and equations to be solved, initialization strategies developed in Chapter 2 are applied to

decrease the computational time of the simulations.

5.3.2 Constraints

As mentioned in Section 5.1, either energy storage or an energy recovery mode is in op-

eration at each time step. The selection of operating mode depends on the economic evaluation

of each time step. The constraint developed in Equation (5.9) helps the optimization algorithm

choose between the operational strategy at each time step:

LNGTo TankLNGFrom Tank = 0 (5.9)

While this constraint assumes that either LNGTo Tank or LNGFrom Tank is zero at each time

step, LNGBY P always has non-zero values. This is because of the continuous demand of LNG to

the CCC plant for the treatment of CO2 produced from the power plant. It is also unlikely that

import and export of natural gas occur simultaneously in practice. Thus, a similar relationship is

assumed between them (Equation (5.10)):

NGPLNGEXPT = 0 (5.10)
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5.4 Model Inputs

In this investigation, a residential electricity demand profile is used as the actual hourly

integrated data for San Diego, USA, for the period between September 13, 2014 and September

20, 2014. These data give the peak electricity demand of the year in the area [177]. Because

this study represents the integration of the CCC process with only one power generation unit,

the electricity demand data is scaled to have a maximum residential demand of 2000 MW. The

assumed electricity demand profile is typical for many residential areas and is shown in Figure

5.3. The average price of electricity for the same period in 2014 for California is also shown in

Figure 5.3 [178]. It is seen from Figure 5.3 that periods with high electricity demand also have

more expensive power price. Wind data shown in Figure 5.4 are based on the actual wind power

data for the same period of time in 2014 for southern California (SP-15 trading hub) [177]. This

study assumes that wind power only contributes up to 10% of the integrated residential demand

over the time horizon. Thus, total actual hourly wind power data from the SP-15 trading hub

is uniformly scaled down such that integrated wind power over the time horizon is approximately

10% of the integrated residential demand used in this investigation. It should be mentioned that the

assumed residential electricity demand and wind power curves are for one of the possible worst-

case scenarios (summer days) when the electricity demand reaches the maximum of the year in the

assumed zone in California in 2014. The trend of the power price in the period of time considered

in this investigation shows less spikes than the rest of the year [178]. More severe fluctuations are

expected to improve the economic justification for energy storage with the CCC. A typical period

was therefore selected over an extended time frame without inflating the benefits.

As for the case without energy storage, excess natural gas produced from the hybrid sys-

tem is combusted in a gas turbine for power production. The hot gas outlet from this turbine is

combined with the coal gases in the boiler convection pass, which gives the turbine the efficiency

of a combined-cycle system. Thus, a fraction of the flue gas from gas turbine (stream 18 in Figure

5.1) is directed to the steam boiler to produce steam for power generation and the rest of it (stream

26 in Figure 5.1) is directed to the CCC plant. Despite the fact that the flue gases produced from

coal and gas combustion have different compositions, it is assumed that the flue gas exhausts from

both streams are treated with the same CCC process for simplicity (Figure 5.1). One approach to

operating with only one boiler for both flue gas exhausts is to consider a recirculation cycle after
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Figure 5.3: Actual electricity demand for San Diego, USA, and average power price for California for the
period between September 13, 2014 and September 20, 2014 [177, 178].

the gas turbine, in which part of the natural gas flue gas is recirculated and introduced back into

the compressor inlet. As a result, the CO2 concentration of the natural gas flue gas directed to the

boiler can be increased to the coal flue gas CO2 level [179–181]. The recirculation concept is the

subject of future work and is not included in this contribution.

In addition, it is presumed that the set point of power production in the steam turbine (PSP)

can vary from 800 to 1800 MW . The capacity of the gas turbine is also assumed to be 50% of the

maximum residential electricity demand (2000 MW ) considered in this investigation (see Table

5.1). While the presumed turbine capacity is large and is not a typical capacity size in practice, it

should be noted that the assumed electricity demand profile has a large range of variation (838 to

2000 MW ). Because the gas and steam turbines considered in this work are the main energy sources

during peak hours and the steam turbine is anticipated a baseline unit, it is not possible to meet the
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Figure 5.4: Actual wind power data for the period between September 13, 2014 and September 20, 2014
[177].

peak of the residential electricity demand without a large gas turbine. With current technologies,

such a large fluctuation in electricity demand is met through several peaking generation units. Thus

the need for oversized gas or oil turbines is eliminated. With a single power generation unit it is

not possible to meet the large gap between maximum and minimum electricity demand. The need

to optimize load following capacity highlights the importance of simulating a power grid in which

the fossil–fueled power generation units are equipped with the CCC process. In this case, peak

electricity demand is met through a combination of power sources. In addition, the energy storage

portion of CCC can effectively become the grid spinning reserve by adjusting its parasitic load in

time to accommodate the dispatch schedule of the grid. This large–scale energy storage capacity

has the potential for significant economic and operational benefit. Study of a large scale power grid

system when fossil–fueled power generation units are equipped with the CCC process is the focus
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Table 5.1: Additional input parameters for the case with energy storage

Parameter Value

GPCC
max (MW )

360 (20% of the upper bound for the
steam turbine power output)

Maximum residential electricity demand (MW ) 2000
Gas turbine capacity (GT cap) (MW ) 1000

of future work. For the purpose of a single generation unit, it is assumed that a large capacity for

the gas turbine is a valid assumption. The pressumed overall efficiencies of the coal and gas-fired

power plants are also 36.8% and 50.2%, respectively, based on higher heating values (HHV) [166].

The coal composition used in this work is that of the subbituminous Wyoming Powder

River Basin coal as given in Table 4.2. Delivered coal price for Wyoming Powder River Basin is

assumed to be $12.65/ton as of March 2014 [182]. Composition of the imported natural gas is also

taken from Table 4.3. Natural gas price is the US national average price of 2014 for the electric

power sector ($5.19 per thousand cubic feet) [183]. Long-term contracts can be secured to reduce

the variability of fuel costs from sources such as natural gas.

The set of equations discussed in this chapter along with those described in Chapter 4 is

implemented in the APMonitor Modeling Language [29] and solved either with an interior point

solver (IPOPT) or an active set solver (APOPT).

5.5 Results and Discussion

This section presents the results of the optimization of the integrated system with energy

storage. The results are for a case study with an LNG tank capacity of 8 million kg. This tank

capacity is selected based on the performance of the hybrid system because the overall trend of

variables does not change with different tank sizes. As mentioned previously, all variables are

presented in mass units to remain independent of the pressure and temperature conditions of the

LNG tank. For typical LNG at the tank temperature and pressure of -94 °C and 37 bar (LNG

density is 290.6 kg/m3), the standard capacity for the 8 million kg LNG inventory is 28000 m3,

which is small compared to LNG tanks in commercial use and represents a very small incremental

expense as a fraction of the overall CCC process and power plant.
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Electricity demand and power production curves (Figure 5.5) show that a dynamic combi-

nation of power sources meets the power demand over time. Power production from coal combus-

tion is the main source of power (with a potential capacity of 1800 MW power generation) and the

gas turbine is mainly used for peak-shaving. However, when wind power is available, less coal and

gas power are produced and the required demand is met from all three resources. Power produced

from natural gas combustion allows for a maximum power output of 1000 MW, though the power

output from the turbine only reaches the maximum when electricity demand is at the maximum

of the year (the middle four days). The heat content of the flue gas from gas turbine produces

extra steam in the boiler. When the inefficiency of steam turbines is taken into consideration, the

maximum steam produced as a result of the heat exchange of the flue gas is equivalent to 190

MW of power during peak hours. Therefore, combustion of the vaporized LNG during peak hours

compensates for the parasitic loss of the CCC and LNG plant and is able to deliver power up to

1190 MW.

While the maximum capacity for coal-based power generation is 1800 MW, variation limi-

tations of the boiler, the economic advantages of natural gas power, and the intermittent generation

from wind cause the optimized coal power production to stay below 1000 MW. This limited power

production from coal is also because of the slow response of the boiler to ramp up to meet the peak

demand. Relaxing the rate of change constraints on coal power leads to more power production

from coal (not shown here). The maximum variation in the boiler load at any time step for the

constrained case is less than 0.1% per minute (76 MW in an hour); thus, maximum variation in

boiler load is much less than the assumed allowable change rate (7% per minute). The boiler also

operates in the typical range of 45-100%.

The dynamics of wind generation require a detailed discussion. This optimization tech-

nique looks both backward and forward in time, resulting in power dispatch that anticipates to

some degree the future behavior of wind. Wind conditions can be accurately predicted about 24

hours into the future, with accuracy decreasing to near zero as time increases to about 72 hours.

Unlike the quite predictable and mostly periodic total power demand, wind is neither predictable

in the long term nor periodic, and the wind data here are both representative of quite different

results on different days and of the time of day when wind is most available. Specifically, wind on

average blows more during off-peak than during peak power demand. One of the great challenges
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Figure 5.5: Electricity demand vs. power production

of intermittent sources such as wind is to maximize its value and contributions on the grid even

though it contributes mostly during low-value periods and in inconsistent ways. These data show

how the CCC process provides a synergy between wind and coal power that significantly benefits

both processes.

Figure 5.6 better presents the trends of power production and electricity demand for the pe-

riod between hours 36 and 80 (also shown in Figure 5.5). Between hours 36 and 60, it is seen from

Figure 5.6 that integrated wind power is much less than that of hours 60 and 84 (approximately

50% less). The surge in wind power for the period between hours 60 and 84 would generally be

known to a dispatcher by hour 36. As indicated in the data, the amount of power produced from the

coal boiler began to decrease a few hours prior to the wind coming on line, with the energy storage

component of the CCC making up the difference until the anticipated wind power had material-
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ized. The energy storage of the CCC comes from the reduced parasitic load in the coal plant, which

is not directly plotted but corresponds with the natural gas power production. In effect, the CCC

process has moved the wind power and the stored energy in the LNG tank that was filled in the

evening and night hours of the day before from a time of day when power demand is decreasing to

near the peak power demand, optimizing its value on the grid both in economic terms and in CO2

reduction. In contrast, for the period between hours 36 and 60, when wind was not significant, the

energy storage from the previous evening had to make up most of the power demand that the coal

boiler could not provide, and coal power production remained high during a longer portion of the

day.

This illustrates how the coal system with energy storing CCC can effectively move the

wind power to peak demand when it is available and can compensate for a lack of wind when it is

not sufficient, providing significant benefit to grid stability and to the economies of both systems.

While it is not shown here, wind is generally shifted forward or backward in time to the nearest

available peak in power demand, within a 24-hour window.

The LNG inventory, LNG production, and LNG requirement to run the CCC process with

the electricity price appear in Figure 5.7. Natural gas flowing to and from the pipeline and elec-

tricity price appear in Figure 5.8. In this study, LNG inventory is initialized from a non-zero value

because the integrated system of power generation and the CCC should be in operation throughout

the year. Thus, at the beginning of the simulation, a non-zero initial value is appropriately selected

for the LNG inventory, based on the pattern of this variable in subsequent days. Consequently,

until there is inventory in the tank, LNG is supplied from it (LNG underproduction in Figure 5.7).

Then, when electricity price is sufficiently cheap, natural gas is taken from the pipeline and stored

in the LNG tank. As stated before, this is also the time when electricity demand is lower than at

peak hours. Thus, LNG inventory in the tank increases (LNG overproduction in Figure 5.7) during

off peak times. It is seen in Figure 5.7 that a significant amount of natural gas is imported at hours

24, 72, and 144 and the tank is completely filled up. This is because of the lower average power

price at hours 24, 72, 144 than the subsequent 48 hours. After the tank is completely filled up in the

early hours of the days starting at hours 24, 72, and 144, LNG is taken from the tank and the level

of the tank drops until it reaches the low threshold of the tank. Unlike hours 24, 48, and 144, at the

beginning of hour 120 natural gas is imported as much as it can supply LNG for only the next 24
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Figure 5.6: Increased value of wind power by using energy storage of the CCC

hours. Integrated wind power during the day starting at hour 120 is more than any other days in the

time horizon (with respect to the integrated electricity demand). Because wind will help meet the

demand, less LNG is needed in the tank in that day to supply sufficient cooling capacity through

the peak. For other days, the LNG tank fills completely because of less available wind and more

expensive power price.

Although the maximum power required to increase the pressure of the recirculating natural

gas to the pipeline pressure is approximately 3.2 MW, it is still more economical (though not more

energy efficient) to export a fraction of the more pure natural gas to the pipeline until the electricity

price is comparatively low. In the cases where the export of natural gas is not considered an option,

the trend of other variables remain the same but the profit obtained over the entire time horizon

decreases by 16.6% when compared to cases where the export of natural gas is considered. Mixed

refrigerant compressors should also remain in operation during peak hours to process natural gas

that could have otherwise been exported to the pipeline. Therefore, more power should be produced
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Figure 5.7: LNG inventory, LNG production, and LNG required to run the CCC vs. power price

to meet the loss of the mixed refrigerant compressor. The aforementioned facts also illustrate the

advantage of using LNG as a refrigerant in the CCC process as it can be exported to the pipeline

when it is vaporized in the CCC process. Vaporized LNG also serves as a fuel when it is needed to

produce more power in the gas turbine.

It is also important to mention that the exported natural gas shown in Figure 5.8 starts

from a non-zero value at the beginning of the simulations. Similar to the LNG inventory, the

initial value of the exported natural gas is selected according to the pattern of this variable in the

following days. Because the electricity price is not sufficiently low, a fraction of the vaporized

LNG is exported to the pipeline. The export of natural gas continues until the electricity price

reaches a low value at hour 6. However, there is still LNG inventory in the tank and the hybrid

system is driven by the stored LNG until it reaches the low threshold in early hours of the next day.

Depending on the power price, this general trend in LNG inventory (Figure 5.7) and natural gas

imported and exported (Figure 5.8) cycles regularly. This is typical for an integrated system with
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Figure 5.8: Natural gas imported and exported vs. power price

energy storage capability. This cyclical nature is based on the ongoing need for electricity which,

in return, requires natural gas and LNG for flue gas treatment in the CCC process.

Electricity on-site demand curves for the main electricity consuming components of the

system provide additional insight. The demand curves for the natural gas compressor, mixed re-

frigerant compressor, and CCC plant (Figure 5.9) illustrate the dynamics of the plant. The natural

gas compressor and CCC plant depend on the residential electricity demand because more power

should be produced during peak hours, which in turn produces more flue gas. Therefore, the CCC

plant demand also increases during peak hours. However, Figure 5.5 shows that more power is pro-

duced from natural gas during peak hours. Because natural gas combustion emits less CO2, less

LNG is required when compared to the case where coal is combusted to meet the same amount

of electricity demand. Thus, during peak hours, the natural gas compressor has lower electricity

demand than in off-peak hours when coal is the main source of power production. On the other

hand, the mixed refrigerant compressor demand decreases when electricity is expensive as most
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of the required LNG is taken from the tank. This is the main energy storing aspect of CCC; the

parasitic load associated with the CCC-based carbon capture can be partially or completely met

with stored LNG. An insignificant residual flow remains to maintain spinning turbomachinery and

temperature profiles. When LNG is stored in the tank and power demand is high, it is economical

to curtail the mixed refrigerant compressor and transfer the saved electricity to meet the peak de-

mand. When there is no storage tank, power should also be supplied to compensate for the loss of

the mixed refrigerant compressor and to meet the LNG requirement during peak hours. A compar-

ison between power demand of the mixed refrigerant compressor with and without energy storage

is shown in Figure 5.10. The efficiency loss associated with working at a different load than the

designed case in the operation of the mixed refrigerant compressor is not considered in this study

and should be addressed in future work.
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Figure 5.9: Demand curves for natural gas compressor, mixed refrigerant compressor, and CCC plant
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Figure 5.10: Comparison between power demand of mixed refrigerant compressor with and without energy
storage

The average profit acquired from the integrated system is approximately $35k/hr. While

the annual performance of the hybrid system over a longer time frame is needed, it is expected

that the profit obtained from this hybrid system is sufficiently large to pay a significant fraction of

the cost of construction of the cryogenic carbon capture plant. Performance of the system over a

longer time horizon is the subject of future work.

5.5.1 Sensitivity Analysis

Finally, the effects of the penalization factors applied in this study (c∆u in Equation (2.5))

are investigated. Penalization factors influence the optimization outcome and are adjustable param-

eters to obtain simulation results that are satisfactory based on operator feedback. These factors
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serve as tuning factors to the model to smooth the trend of the variation of the simulated operation.

If movement penalization is not applied, large and sharp variations in the trends of variables creep

into the solution with little additional benefit towards the overall objective. This movement con-

trasts with the desired stability of the system and highlights the need to include additional terms in

the optimization problem to align simulation objectives with operational experience. However, it

is important to minimize the use of penalization factors as much as possible because they impose

an artificial cost to the objective function. A penalization factor is applied to the flow rate of the

imported and exported natural gas. The change in the objective function for applying different

penalty factors for these variables is less than 5% for one order of magnitude of variation. In other

words, these penalization factors do not change the overall trend of the variables over the time

horizon (not shown here), and the main effect the factors have is on the smoothness of the results.

These tuning factors are adjusted in each simulation when sharp fluctuations are observed in the

trend of the decision variables from initial attempts to solve the problem.

5.6 Conclusion

This chapter reports an optimization framework for the integrated system of fossil and re-

newable energy sources with the energy-storing version of the cryogenic carbon captureTM (CCC)

process. The CCC process has rapid response to the fluctuations in the electricity demand and is

able to store excess energy in the form of condensed, cold refrigerant. These features enable the

power grid to utilize more renewable energy sources. The objective in this chapter is to meet the

total electricity demand of a residential area and the CCC process and to maximize the operating

profit of the system.

Results show that a combination of coal, gas, and wind generation can be fully utilized to

meet the total electricity demand. Produced CO2 from the fossil-fueled power plants is captured at

a rate of 90% while 100% of the available wind power is utilized. The sporadic wind production is

effectively moved from periods of low value to the grid to periods of peak value while significantly

stabilizing the grid. Off-peak excess generating capacity also moves to peak periods, increasing

capital utilization and decreasing the fluctuation in boiler loads relative to the fluctuation of power

demand. While the steam boiler considered in this chapter is assumed to follow the electricity

demand curves in a change rate as much as 7% per minute, the maximum rate of load change in
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the boiler is observed to be less than 0.1% per minute. The average profit acquired from the hybrid

system is approximately $35k/hr. The performance of the integrated system for baseline steam

boilers that are not able to follow the electricity demand curves is the focus of Chapter 6.
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CHAPTER 6. DYNAMIC OPTIMIZATION OF A HYBRID SYSTEM OF CRYOGENIC
CARBON CAPTURE AND A BASELINE POWER GENERATION UNIT

6.1 Introduction

Integration of the CCC capture process with a coal–fired steam boiler that is able to follow

the load was considered in Chapters 4 and 5. However, many coal–fired generation units operate in

a baseline mode and the power output from those generation units is approximately constant over

most of the operational lifetime. This chapter considers the integration of a baseline coal–fired

steam boiler with a cryogenic capture process. Considering energy storage, the hybrid system is

also able to follow the peak demand with a gas turbine without necessarily cycling the coal–fired

steam boiler. This is a distinguishing feature of this chapter from Chapter 5. Minor adjustments

to the model developed in Chapters 4 and 5 make boiler output constant or load–following. This

chapter quantifies boiler cycling costs and the economic benefit of their mitigation by CCC in

systems with and without intermittent sources such as wind.

This chapter is divided into four sections. First, the adjustments required in the model

to represent the baseline performance are discussed. Next, the optimization results obtained for

an integrated system of a baseline power generation unit and the CCC process are presented. A

comparison between power production in the gas turbine through a simple or combined cycle is

also made. Finally, the impact of energy storage of cryogenic carbon capture on leveling the power

output from a steam turbine and the associated savings are discussed.

6.2 Model Adjustment for Baseline Performance

As mentioned previously, the model developed in Chapters 4 and 5 is slightly adjusted

to achieve the performance of a baseline coal–fired power generation unit. This is achieved by

dedicating a large penalization factor, c∆u in Equation 2.5a, to the variation of the set point of the

steam turbine power output, (PSP). In this case, the steam turbine power output does not vary
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unless there is an improvement in the overall objective function. In addition, the change in steam

turbine power output between subsequent time steps is limited to 100 MW/hr to further restrict

the variation of the power output in the steam turbine. This maximum change rate is much less

than 1%/min of the nominal load–following capacity of the steam turbine.

To make the objective function more accurate, the variable and fixed operating and mainte-

nance (VOM) costs of the the power generation units are added to the profit function developed in

Equation 5.8. The variable operating and maintenance of the coal- and gas-fired power generation

units are represented by VOMCT and VOMGT while fixed operating costs (FOM) are presented by

FOMCT and FOMGT for the coal– and gas–fired power units, respectively. In this investigation,

the same VOM and FOM costs are assumed for both power generation types and are equal to 7.3

and 10.2 dollar per MWh of energy production, respectively [166]. Thus:

Pro f it = (DRes−DPlant)PE − (NGPL−NGEXPT )PN−PCC

−(FOMCT +VOMCT )PCT − (FOMGT +VOMGT )PGT
(6.1)

The input data and other assumptions used to evaluate the performance of an integrated

system with a baseline coal–fired generation unit are the same as a load–following unit discussed

in Chapter 5.

6.3 Results and Discussion

The results for the integration of cryogenic carbon capture with a baseline coal–fired power

plant are presented in this section. Figure 6.1 presents the total power generation in the steam

turbine. For comparison, the power generation from a load-following steam turbine is also shown

in Figure 6.1.

As is observed in Figure 6.1, total power generated in the steam turbine does not vary

significantly for most of the simulation time. The minimum output for the steam turbine (820

MW ) is close to the selected lower limit (800 MW ). Because the steam turbine operates as a

baseline unit, the power output from this unit does not cycle during peak hours and gas power is

used instead as the peaking unit (shown in Figure 6.2). The small variations observed in the trend
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Figure 6.1: Total power generation from the steam turbine vs. wind power

of the steam turbine power output between hours 110 and 160 is because of a high penalization

factor, whi, dedicated to avoid overproduction of power. When wind power is significant (for

instance for the period between hours 115 to 150), power output from the steam turbine decreases

a few hours before the wind power comes online with the energy storage component of the CCC

process making up the difference. Thus, the cost associated with power overproduction is avoided.

While this small variation is inevitable to avoid the overproduction penalization cost, the power

output remains constant after the change is made as a result of the penalization cost associated

with variation of power output of the steam turbine. It is also observed that after hour 156 to

the end of the simulation time, wind power has a smaller contribution in meeting the electricity

demand and it is found more economical to increase the power output from the steam boiler.

From Figure 6.2, it is also observed that the overall electricity demand is met through a

combination of power sources. Whenever wind power is available, it is utilized first to meet the
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Figure 6.2: Electricity demand and power production from coal, wind, and natural gas

electricity demand while the power output of the steam turbine is mostly at a value close to the

minimum residential electricity demand. Gas power is mostly produced during peak hours to meet

the increasing electricity demand. This is because more LNG is required in the CCC process to

treat the higher amounts of flue gas produced during these hours. As LNG from the tank produces

excess natural gas inside the plant (after treating the flue gas), this natural gas could be used for

power generation in the gas turbine. This is more economical than combusting coal to meet the

peak demand. This finding is also compatible with the baseline nature of the steam turbine and

permits the optimization problem to avoid the cycling cost of the steam turbine. Production of

gas power is a direct impact of using energy storage; i.e. it permits the system to overproduce

LNG refrigerant during low power demand or when wind is readily available and to drive the CCC

process from the stored refrigerant. The excess warm refrigerant produced during energy recovery

is either sent back into the pipeline or used as a fuel source in a gas turbine.

From Figure 6.2, it seems that a value of 1020 MW , the maximum output from the steam

turbine, is reasonable to meet the combined electricity demand of the residential users and CCC

plant. However, economical calculations are needed with consideration of the life time of the

steam turbine and the growing need in electricity demand to accurately size it. While with the

energy storage capability of the CCC process it is expected to benefit wholesale electricity prices
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in a power grid, no impact on the energy price is assumed. The output results obtained from

such analysis predict the required energy from each source for the following days subject to the

constraints for each power source (e.g. baseline steam turbine). The impact of the energy storage

on the wholesale electricity prices is outside the scope of this study.

Trends of variables for the natural gas imported and exported to the plant are shown in

Figure 6.3a and are similar to the results obtained in Chapter 5. Import of natural gas to the plant

is mainly observed when electricity is cheap. Export of natural gas from the plant, on the other

hand, occurs when electricity is relatively expensive. This permits the system to avoid liquefying

the circulating natural gas (NGCCC) when demand in electricity is high. Trends of LNG inventory

in the tank (Figure 6.3b) reflect an excellent transient response of this optimization problem to

fluctuations in residential demand, energy price, and wind power availability. LNG inventory in

the tank is dependent on the energy price, current inventory in the tank, wind power availability,

and the penalization factors used for the natural gas imported to and exported from the plant. Thus,

LNG inventory is a cumulative effect of these factors and is less intuitive to accurately attribute its

trend to each of these factors. However, it is expected to store LNG when higher electricity price

or lower wind availability are foreseen. For instance, between hours 86 and 92 when two peaks

in electricity price are anticipated, LNG is stored in the tank before reaching hour 86 to be used

during this period. Recovery of the LNG from the tank continues until the tank is emptied at hour

124. LNG storage is started again after hour 125; however, more wind power is available from

hour 123 to 144 and the tank is not filled completely. This is because the increased availability

of wind power is utilized to meet the power demand and less power is produced from the fossil

fuels (consequently less CO2 is produced). After hour 152, on the other hand, wind power is less

available and it is seen that the LNG tank is fully filled before reaching hour 152. A reasonable

cycling in the trend of LNG inventory is also observed after hour 152 and in the first 72 hours.

These findings are also similar to the performance of the integrated system with a load–following

coal–fired power plant.

While the penalization factors are used to smooth the trends of variations in natural gas to

and from the plant, the overall trends for these variables and LNG inventory remain the same; i.e. a

cyclical trend for the LNG inventory is observed and import and export of natural gas occur during

off and on peak hours, respectively.
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(a) Natural gas imported to and exported from the
plant
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(b) LNG inventory

Figure 6.3: Trend of natural gas and LNG inventory

Trends of electricity demand for the mixed refrigerant (MR) and natural gas (NG) com-

pressors are presented in Figure 6.4. A peak in the electricity demand of the mixed refrigerant

is observed during off–peak hours that is associated with the storage case when the LNG tank

is filled. The CCC process is then operated with the LNG recovered from the tank and permits

the mixed refrigerant compressor to work at a minimum load when electricity is in high demand.

Reduction in the electricity demand of the mixed refrigerant compressor can continue for as long

as there is LNG inventory in the tank. Decisions on how long either energy storage or recovery

should continue are economically-driven. As discussed in Chapter 5, inefficiency associated with

working at non–optimal operating points for the compressor is not considered and the compressor

is also permitted to turn on and off without any efficiency penalty. While these assumptions are

acceptable to convey the energy storage concept, they should be modified when financial decisions

are made. This is the focus of future work.

The average profit obtained from Equation 6.1 for a baseline steam turbine over the se-

lected days is $6.5k/hr. This is compared to $13.6k/hr obtained when the power output from the

steam turbine is allowed to vary without penalization. When the steam turbine is allowed to vary,

penalization factor for the variation of power output, c∆u in Equation (2.5a), relaxes; thus, the hy-

brid system obtains a new optimum and results in an average profit of $13.6k/hr. The ratio of total

profit and total energy production from all sources considered over the simulation time is 0.43
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Figure 6.4: Electricity demand for refrigeration compressors and CCC plant in a combined cycle power
generation unit with energy storage

¢/kWh for a baseline case while it is 0.91 ¢/kWh for a variable steam turbine. When fixed and

variable operating and maintenance costs of the coal– and gas–fired power generation units (VOM

and FOM) are ignored in Equation (6.1), the average profit for the baseline case is approximately

$29k/hr which is 20% less than the average profit of a load-following steam turbine ($35.5k/hr).

Similarly, the ratio of the total profit and total energy production when VOM and FOM are ignored

in Equation (6.1) is 1.92 ¢/kWh and 2.40 ¢/kWh for baseline and load-following steam turbines,

respectively.

6.4 Comparison Between Combined and Simple Cycles

A comparison is also made when power generation from the gas turbine is achieved in a

simple cycle (scenario 1); i.e. gas turbine exhaust does not generate power. In addition, natural gas
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supply for the gas turbine in scenario 1 is not the vaporized LNG exiting from the CCC process. In

this case, the gas turbine serves as an independent peaking unit. However, it is still assumed that

the CCC process treats the flue gas generated from the natural gas turbine. Because a simple cycle

is assumed, treatment of the gas turbine exhaust is achieved by adding it to the coal exhaust after

the coal superheaters and reheaters. The capacity of the gas turbine in scenario 1 is assumed the

same as the analysis discussed in Section 6.3 (1000 MW ). The analysis discussed in Section 6.3 is

referred to as scenario 2 for the remainder of this section. In scenario 2, the baseline performance

is achieved through a combination of the steam generated from the coal and natural gas flue gas;

i.e. when coal power in Figure 6.2 is at a maximum, power from the combined cycle is at a

minimum and the reverse trend is also observed. In scenario 1, however, the baseline performance

is achieved merely from the steam generated from coal combustion (coal power). Thus, more

coal is combusted in the steam boiler in a simple cycle to achieve the same steam flow rate and

power output as a combined cycle. To make a fair comparison, it is assumed that the power output

obtained in scenario 2 for the steam turbine, PST in Equation 4.1, is an input to scenario 1 and it is

not varied; i.e. rate of steam production is the same for both scenarios. In addition, it is assumed

in scenario 1 that energy storage is not available. This case represents a typical power generation

unit that is equipped with a carbon capture technology (without storage capability) and a peaking

unit to capture the CO2 emissions while meeting the electricity demand.

With these assumptions, optimization of the system presented in scenario 1 is implemented

and the results are compared with scenario 2. In both scenarios, power production from coal and

gas is considered a single generation unit and the power supply is used to meet the electricity

demand of residential users and the CCC plant. Figure 6.5a and 6.5b represent the trends of excess

power production in each scenario. In scenario 1, power supply equals the electricity demand

for most of the simulation time. However, both over production and under production of power

occur (Figure 6.5a) despite the penalization factors applied to balance the demand and supply of

electricity. For scenario 2, there is no mismatch between electricity demand and power supply over

the horizon. The mismatches seen in scenario 1 stem in large part from the increased power demand

on the system associated with carbon capture with no compensating increase in capacity. These

would become more severe for other carbon capture systems, essentially all of which consume

significantly more energy than CCC. The mismatches in scenario 1 are rare, however, when a grid
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(a) Simple cycle power generation without energy
storage (Scenario 1)
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(b) Combined cycle power generation with energy
storage (Scenario 2)

Figure 6.5: Excess power comparison between combined and simple power generation cycles with and
without energy storage, respectively

analysis is implemented (due to the presence of peaking units). This comparison highlights the

importance of energy storage of the CCC process. Energy storage adds flexibility to a single coal–

fired generation system to operate as a baseline unit and still be able to meet the peak electricity

demand without heavily relying on other generation units in the grid. This is because the hybrid

system has a higher power production capacity through time–shifting of the compressor demand

and the combined cycle, thereby creates less severe peaking problems comparing to other carbon

capture processes.

The overall mass flow rate of the coal combusted for steam production in a system that

includes natural gas in a simple cycle is 8% more than if natural gas is in a combined cycle,

as expected. Total electricity consumption of the plant is also 8% more in scenario 1. This is

because scenario 1 produces more flue gas from coal consumption to achieve the same steam

flow rate as in scenario 2. Unlike scenario 2, the total flow rate of natural gas imported and

exported to the pipeline in scenario 1 is zero because there is no opportunity for arbitrage of

electricity without energy storage (Figure 6.6) and time–shifting of the electricity demand of mixed

refrigerant compressor is not achievable. Thus, natural gas consumption in the simple cycle power

generation unit is merely for the purpose of meeting the peak total electricity demand. In contrast,

in the case of a combined cycle with energy storage, natural gas has the dual purposes of serving

116



Time (hr)
0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192

E
le

ct
ric

ity
 d

em
an

d 
(M

W
)

0

20

40

60

80

100

120

140

160

180

E
ne

rg
y 

pr
ic

e 
($

/M
W

h)

25

40

55

70

85

100

MR compressor
CCC plant
NG compressor
Energy price

Figure 6.6: Electricity demand for refrigeration compressors and CCC plant in a simple cycle power gener-
ation unit without energy storage

as the refrigerant and a fuel. Thus, natural gas is imported and exported from the plant to take

advantage of the arbitrage of electricity (Figure 6.4). A comparison between the profitability of

these two scenarios is meaningless because the primary goal of meeting the electricity demand at

all time steps over the horizon is not achieved in scenario 1.

6.5 Comparison of Cycling Costs

An important aspect of power plant operation is the cost associated with ramping, also

known as load following or cycling. The changes in operational levels of the plant result in in-

creased thermal, pressure, and mechanical related stress and fatigue [184, 185]. This leads to

increased equipment degradation and associated operation and maintenance costs, as well as de-

creased thermal efficiency.
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In general, research done on ramping in power plants has looked at the most fragile part

of the plant, the turbine rotor. Historically unit commitment models with economic dispatch have

incorporated fixed ramp-rate constraints with the assumption that ramping between the constraints

will not cause damage to the turbine rotor [186, 187]. In 2012, a report published by National

Renewable Energy Laboratory [173] investigated the cost of ramping for an entire plant by consid-

ering the cycling costs of several power generation types [188]. This report provides a lower bound

for the cycling costs of eight types of generation units. The cycling costs are reported for different

cycling scenarios including cold start, warm start, hot start, and load-following cases. Between

these cycling scenarios, cold start and load-following have the highest and lowest cycling costs,

respectively. For instance, the lower bound for the cold start cycling costs of a typical large-scale

subcritical coal-fired power plant is $105/MW capacity per cycle while load-following cycling cost

for the same generation type is $2.45/MW capacity per cycle [188]. While startup scenarios im-

pose the most expensive cycling costs of the power plants, it is not the scope of this dissertation

to investigate them. Consideration of such scenarios requires a longer simulation time (e.g. one

year) to be taken into consideration. Instead, this analysis considers just the impact of cryogenic

carbon capture on the cycling costs due to load-following of the coal- and gas-fired power gen-

eration units. According to [188], the cycling cost of a generation unit varies between individual

plants and the numbers provided in this report are generic lower bounds. In this study, estimated

multiplicative factors are also provided for faster ramp rate. These multiplicative factors, however,

are not considered in this dissertation and the cycling costs are the median capital and mainte-

nance costs of typical ramping rates. This investigation considers the load-following cycling costs

of large–scale, subcritical coal–fired and natural gas combined cycle (NGCC) power generation

units. Accordingly, the cycling cost associated with load-following of a coal–fired generation unit

is $2.45/MW capacity per cycle while it is $0.64/MW capacity for a NGCC power plant. To calcu-

late the number of cycles for power generation from both coal and gas, a post–processing approach

is considered, i.e., power outputs from solving the optimization problem are used as input to the

rainflow cycle counting algorithm [189] where the output from the algorithm is the number of cy-

cles. This calculation assumes that power output from the optimization results has a similar trend

to overall stresses in the boiler. The rainflow algorithm allows the application of Miner’s rule to
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assess the fatigue life of a structure subject to complex loading. More details about the rainflow

algorithm are available in [190].

With the abovementioned assumptions, the cycling costs of the baseline and load–following

steam turbines are considered. The power outputs from the coal– and gas– fired generation units,

PST and PGT , for both scenarios are used in the rainflow cycle counting software developed in

[191]. Consequently, the number of cycles for the load–following scenario for the coal– and gas–

fired generation units are found to be 20 and 17, respectively, over 8 days of simulation time.

For a baseline scenario, there are 1 and 21 cycles in the power output from the coal– and gas–

fired generation units, respectively. Optimization of the baseline and load-following coal–fired

generation units result in a maximum power output of 1020 MW and 1210 MW , respectively.

As mentioned previously, sizing of the generation units is beyond the scope of this dissertation

and requires extensive study. However, a capacity of 1800 MW (upper bound for PSP) is a good

estimate for both load–following and baseline coal–fired generation unit for the purpose of cycling

costs comparison. With this capacity, the cycling costs of the coal–fired unit for the load-following

scenario are 1800×2.45×20 = $88200 for 8 days of simulation time while they are 1800×2.45×

1= $4410 for a baseline case study. In addition, the cycling cost of the load–following scenario for

the gas–fired unit is 1000×0.64×17= $10880 compared to a value of 1000×0.64×21= $13440

for a baseline case over 8 days of simulation. In summary, the total costs associated with the cycling

of all generation units considered in this investigation are $99080 and $17850 for load–following

and baseline scenarios, respectively, over 8 days of simulation time. The total costs of cycling

for the same power generation units in the absence of wind power are $94100 and $14010 for the

load–following and baseline coal–fired generation unit, respectively. These costs are based on 1

and 15 cycles for the coal– and gas– fired generation units, respectively, in a baseline case while

18 and 23 cycles are observed for the the same units, respectively, in a load–following case. Table

6.1 summarizes these results.

The saving in the cycling costs of the baseline generation units, in the presence and absence

of wind power, is also a direct result of the energy storage of cryogenic carbon capture. It is well–

known that coal–fired generation units are mainly designed for baseline operation. Equipping

the coal–fired power plant with cryogenic carbon capture enables the power generation unit, as a

whole, to follow the load without necessarily varying the steam turbine output. This is achieved by
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Table 6.1: Summary of cycling costs

With wind Without wind
Load-following

boiler
Baseline

boiler
Load-following

boiler
Baseline

boiler
No. Cycles in boiler

(Cost)
20

($88200)
1

($4410)
18

($79380)
1

($4410)

No. Cycles in gas turbine
(Cost)

17
($10880)

21
($13440)

23
($14720)

15
($9600)

Total cycling costs $99080 $17850 $94100 $14010

supplying the natural gas required for the peaking unit from the storage system while the carbon

dioxide separation from both generation units remains in operation.

It should be emphasized that these costs are the generic lower bounds for cycling of the

power generation units, and they do not consider the more expensive practices of cold, warm, and

hot starts. In addition, it is unlikely to have this many cycles in the boiler in 8 days to follow the

load in practice (for both baseline and load–following power generation units). This is because

supplemental peaking units are used to avoid the variations in power output from the coal–fired

generation units. While more accurate analysis of the number of cycles requires longer simulation

horizon, this study demonstrates the potential reduction in cycling costs of a coal–fired power

generation unit by utilizing the energy storage of the CCC process.

6.6 Conclusion

This chapter considers dynamic integration of a baseline fossil–fueled power generation

unit with cryogenic carbon capture. Similar to the integrated system with load–following capabil-

ity (discussed in Chapter 5), effective time–shifting of the electricity demand of the refrigeration

compressors is observed for a baseline case study. The total electricity demand of the residential

users and the CCC plant is met through a combination of power sources. Wind power, whenever

available, is first used in meeting the demand. This leads to 100% utilization of the wind power.

With the energy storage of cryogenic carbon capture, a single coal–fired generation system is able
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to operate as a baseline unit and still be able to meet the peak electricity demand. Energy stor-

age also enables a potential 82% and 85% decrease in the costs associated with load–following of

power generation units in presence and absence of wind power, respectively.

121



CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

Increasing demand of energy has motivated ongoing optimization of the new and existing

technologies. In this dissertation, advanced estimation, optimization, and control techniques are

applied to representative applications of large–scale and complex systems. The methods enhance

the profitability and product quality while minimizing energy consumption. Moving horizon esti-

mation and model predictive control are utilized in this study to optimize mathematical models of

a batch distillation column and a hybrid system of power generation and cryogenic carbon capture.

The estimation and control frameworks developed for both applications are modular and applica-

ble to optimize complex dynamic systems. These models are nonlinear and non–convex. Several

strategies are developed in Chapter 2 to initialize the nonlinear models and find a successful so-

lution with improved computational time and convergence properties. Convergence is improved

through a methodology to break a larger problem down into separate parts that can be isolated and

diagnosed for convergence issues.

In Chapter 3, shortcut-based and detailed mathematical models are developed for a batch

distillation column. This model utilizes a dynamic parameter estimation approach with an `1-norm

objective function to fit the model prediction to experimental data. Data collection from the dis-

tillation column is achieved by applying a doublet test on the column reflux ratio and measuring

the instantaneous composition and molar quantity of methanol. With dynamic parameter estima-

tion, system non-idealities are included in the model to capture a high fidelity model response and

compare it with a reduced–order model. Dynamic parameter estimation with a sensitivity analy-

sis reduces the experimental data requirement from the column by identifying key parameters for

identification. The accuracy of the estimated parameters is verified by implementing a nonlinear

statistical analysis. The results predicted by the reduced–order model developed in this dissertation

match the experimental data and the results obtained from a more rigorous first–principles model.
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The solution time of the simplified model is, however, 5-10 times faster than the first-principles

model. Faster solution time of the model is desirable in real-time control and online optimization

applications. The verified model is then used to optimize the column operation by manipulating

the column reflux ratio. Similar to the estimation analysis, an `1-norm objective function is utilized

for column optimization. With dynamic optimization of the column, a 14% increase in methanol

production is observed while the product composition meets the final purity requirements. With-

out measurement feedback, the predictions from the optimization analysis match the experimental

data with a maximum error of 10% and 0.8% for overall methanol production and composition,

respectively.

In a second application of the methodology for large–scale and complex systems, an opti-

mization framework for a hybrid system of power generation and the CCC process is developed.

The CCC process considered in this investigation is a novel technology for CO2 removal from the

flue gases of fossil–fuel power plants. Benefits are lower energy consumption, rapid response to

fluctuations in demand, increased adoption of intermittent power supplies, and grid–scale energy

storage capability. This study considers the dynamic integration of a simulated coal–fired power

plant with cryogenic carbon capture for the first time. In this dissertation, data provided by the

Sustainable Energy Solutions for energy demands, response times, and energy storing capabilities

is used to analyze the impact of the CCC process on the power grid. The two main goals of this

analysis are: (1) meet the total electricity demand and (2) maximize the operational profit of the

hybrid system while capturing 99.9% of the CO2. The modeling framework developed in this dis-

sertation is modular; i.e. different capture processes, energy storage, and power generation units

can be considered in this framework to explore several adoption and integration scenarios that lead

to increased grid stability and full utilization of renewable sources. Three main case studies are

considered for the hybrid system: (1) a load–following boiler without energy storage, (2) a load–

following boiler with energy storage, and (3) a baseline boiler with energy storage. The analysis

for a baseline boiler with natural gas peaking turbines addresses the operation of older designs

of coal–fired power generation units while operation of recently designed coal power plants is

highlighted in the load–following boiler analysis.

For the case study without energy storage, it is shown that power demand is always met

through a combination of coal, gas, and wind power (for both summer and winter case studies).
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For the winter case, wind power is more readily available and it has a stronger contribution to the

total electricity demand. However, because of the high fluctuations in wind power availability, gas

power is favored relative to the summer case. This is because of the rapid response of the gas

power to make up for the intermittent behavior of wind power. Increased production of power

from the natural gas in winter case requires more fuel that should be imported from the pipeline.

Consequently, 100% increase in the overall intake of natural gas for the winter case, in comparison

to the summer case, is observed. The overall production of LNG as stored refrigerant for the CCC

process decreases by 80% in the winter case. This is because the higher share of power production

from wind and natural gas reduces the total CO2 production. Thus, less refrigerant is required

for flue gas treatment. The average operational profits for the summer and winter case studies

are $21k/hr and $13k/hr. The higher profit obtained in the summer case is attributed to the larger

variation in the electricity price than the winter case. A sensitivity analysis for the impact of wind

power adoption in meeting the demand is a novel contribution of this work. With an increase in

the adoption rate of wind power, power production from coal decreases while power generation

from natural gas increases. The trade-off between a decrease in coal consumption and an increase

in natural gas consumption results in a maximum in the trend of profitability with respect to wind

adoption rate; i.e. at a value of α = 0.66, the profit of the hybrid system without energy storage is

at a maximum. This observation remains valid for a range of natural gas and coal prices.

Energy storage significantly improves the performance of a hybrid system. When energy

storage is included, import of natural gas shifts to time periods with a low electricity price. This

also causes a peak in the LNG production (and electricity demand of the refrigeration compressor)

to shift to these time periods. The LNG produced in excess during these times accumulates in

an insulated vessel and is utilized when electricity demand and price are high. This curtails the

electricity demand of the refrigeration compressor during peak–hours. Export of natural gas to

the supply pipeline during peak hours further reduces the demand of the refrigeration compressor.

Effective time–shifting of this compressor work (and LNG inventory in the tank) occurs for both

load–following and baseline scenarios. This work also demonstrates the enhanced contribution of

wind power by utilizing large-scale energy storage of the CCC process. A profit of $35.5k/hr and

$29k/hr is obtained from optimization of the load–following and baseline power plants, respec-

tively (ignoring the FOM and VOM costs). These profits are equivalent to 2.4 ¢/kWh and 1.92
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¢/kWh for the load–following and baseline power plants, respectively. The profit obtained from

dynamic optimization of the hybrid system can pay a significant fraction of the cost of construction

and operation of the cryogenic carbon capture plant, the latter being estimated at 2.5-3 ¢/kWh.

Similar to the case without energy storage, total power demand is met through a combina-

tion of power sources. In all scenarios, wind power is utilized first to meet the electricity demand.

Gas power is mainly produced during peak hours or when wind varies significantly. The fuel sup-

ply for the gas turbine is either from the pipeline (without energy storage) or when an LNG storage

tank is available. Coal remains the main source of power production in this hybrid system.

A comparison is also made between the operation of a combined cycle and a simple cycle

power generation unit. In the simple cycle, the gas turbine operates as an independent peaking

unit and the fuel supply for the turbine is not from energy storage (unlike the combined cycle).

While the rate of steam production is assumed the same for both scenarios, energy storage is not

considered in the simple cycle scenario. Thus, the simple cycle represents a typical coal–fired

power plant that is equipped with a carbon capture process without energy storage. Optimization

results show that when energy storage is not considered, significant mismatches between power

production and demand occur throughout 8 days of simulation time. This highlights the importance

of energy storage of the CCC process. With energy storage, the hybrid power generation unit is

capable of producing more power during peak hours, thereby the CCC process creates less severe

peaking problems comparing to other carbon capture processes.

Total cycling costs of all generation units potentially decreases by 82-85% with baseline

operation. Equipping the power generation unit with large–scale energy storage of the CCC process

stabilizes the baseline production. It enables the hybrid system to follow the load while CO2

capture remains in operation and the output power of steam turbines do not vary significantly.

7.2 Future Work

Several future contributions are needed to further enhance capabilities to solve large–scale

and complex dynamic systems. One important area is the development of mixed–integer nonlinear

programming solvers to achieve faster solution times and higher success rates in finding a solution

(or to quickly identify infeasible problems). In addition to enhanced algorithm development, sev-
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eral innovations are proposed for batch distillation and integrated energy systems in the following

two sections.

7.2.1 Batch Distillation Column

The model developed for the batch distillation column is optimized in an offline mode.

Application of the model for online optimization of the column would improve performance by

utilizing measurement feedback to continually correct model predictions and re–plan the batch

reflux ratio profile. A nonlinear confidence interval for `1-norm objectives has not been fully

developed because the F–statistic is based on the ratio of χ2 distributions. The χ2 distributions

are currently only for squared error objectives. Application of this approach for advanced column

designs such as a cyclic distillation column is another potential direction for future work.

7.2.2 Hybrid System of Power Generation and the CCC Process

The effects of equipment capital cost in the economic evaluation of the integrated system

are not considered in this investigation. Considering capital costs of the equipment in economic

evaluation of the hybrid system requires a longer simulation horizon. This issue should be ad-

dressed in future work because sizing of equipment influences the dynamic operation and overall

profitability. In addition, operation of the refrigeration compressor at different operating points is

assumed to have the same efficiency. The efficiency loss due to operation at non–optimal points

is the focus of future work. Additionally, compressors have finite turndown ratios and a minimum

flow is typically circulated in the compressor to avoid shutting down the compressor completely.

This should be added to the model in future analysis. Moreover, there is a significant cost as-

sociated with operating a boiler at a power output less than its designed capacity. For example,

cyclic operation of a boiler is an instance that leads to a lower capacity utilization. This results

in an increase in the average cost of power generation. Considering the impact of operating the

boiler at a reduced power output on the cost of power generation is the focus of future work. Ad-

ditionally, not all natural gas is suitable for LNG storage. The CO2 content of natural gas might be

higher than the LNG production standards. The CCC process can also be used to reduce the CO2

content from the pipeline natural gas. The natural gas processing facility is discussed in details
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in [192–194]. Integration of the natural gas processing facility with the hybrid system of power

plant and the CCC process is another direction for future work. Further future directions include

investigating the impact of the recirculation system on the flue gas exhaust from coal and gas–fired

power plants, quantifying the impact of the energy storage on the wholesale electricity prices, con-

sidering the more expensive start–up scenarios on cycling costs of the power plants, and exploring

the uncertainty in prices and wind data.

The impact of cryogenic carbon capture along with the associated energy storage is con-

sidered on a single power generation unit. The energy storage of the CCC process can positively

impact the stability of the power grid. In current power grid systems, stability and reliability of the

grid depend in part on the individual unit availability and in part on spinning reserves. Spinning

reserves are typically operated when there is a sudden increase in electricity demand or when some

other generation unit unexpectedly goes off line. Because this only occasionally happens, spinning

reserves typically have very low capacity factors, which in turn leads to very high average cost

of power generation. The cost of power generation as a function of the cumulative grid operating

capacity forms a dispatch curve similar to Figure 7.1 with the low capacity-factor systems typically

having the highest costs [195]. The cost curve is highly nonlinear with peaking plant sources. What

the figure does not illustrate is that some amount of spinning reserve is always online, regardless

of the overall grid demand. Therefore, the rapid increase in cost of power for the last increment

of capacity will always exist, regardless of the power demand. The systems represented by this

section of the curve generally only operate during high or sudden increase in power demand. This

gives rise to significant changes in the cost of power generation from low to high demand periods.

These differences are an inherent part of any highly reliable grid that integrates several individ-

ual power sources. The energy storage portion of CCC, however, can effectively become the grid

spinning reserve by adjusting the parasitic load of the compressors in time to accommodate the

dispatch schedule of the grid. This energy storage capacity will essentially always have significant

economic benefit on a grid. Simulation of a larger power grid with fossil-fueled units equipped

with CCC is the scope of future work.

Additionally, the abovementioned optimization framework for the power grid should be

implemented in an actual dispatch control center for a grid. This framework is required to consider

real-time updating of the model with respect to operational changes or disturbances in the grid.
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Figure 7.1: Power supply curve for Southeastern Electric Reliability Council region [195]

This is especially important for unpredictable upsets in the grid such as the shut down of a power

plant on the grid. This requires addition of more robust optimization algorithms, utilization of

warm-start initialization strategies, and usage of more computational resources.

7.3 Publications

The main contributions of this dissertation are presented in several journal papers and con-

ferences and they are listed below:

• Safdarnejad, S.M., Hedengren, J.D., Baxter, L.L., Dynamic Optimization of a Hybrid Sys-

tem of Energy–Storing Cryogenic Carbon Capture and a Baseline Power Generation Unit,

Applied Energy Journal, Volume 172, Pages 66-79 (Chapters 4 and 6)
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• Safdarnejad, S.M., Gallacher, J, Hedengren, J.D., Dynamic Parameter Estimation and Op-

timization for Batch Distillation, Computers and Chemical Engineering Journal, Volume 86,

Pages 18-32 (Chapter 3).

• Safdarnejad, S.M., Hedengren, J.D., Lewis, N.R., Haseltine, E., Initialization Strategies for

Optimization of Dynamic Systems, Computers and Chemical Engineering Journal, Volume

78, Pages 39-50 (Chapter 2).

• Safdarnejad, S.M., Hedengren, J.D., Baxter, L.L., Plant-level Dynamic Optimization of

Cryogenic Carbon Capture with Conventional and Renewable Power Sources, Applied En-

ergy Journal, Volume 149, Pages 354-366 (Chapter 5).

• Safdarnejad, S.M., Kennington, L., Hedengren, J.D., Baxter, L.L., Investigating the Im-

pact of Cryogenic Carbon Capture on the Performance of Power Plants, American Control

Conference (ACC), Chicago, IL, July 2015 (Chapter 4).

• Safdarnejad, S.M., Richards, J., Griffiths, J., Hedengren, J.D., Baxter, L.L., Increased Sta-

bility of a Power Grid by Energy Storage of Cryogenic Carbon Capture, AIChE Spring

Meeting, Houston, TX, Apr. 2016 (Chapter 6).

• Safdarnejad, S.M., Gallacher, J. R., Hedengren, J.D., A New Framework for Dynamic Pa-

rameter Estimation and Optimization of Batch Distillation Columns, AIChE National Meet-

ing, Salt Lake City, UT, Nov. 2015 (Chapter 3).

• Safdarnejad, S.M., Hedengren, J.D., Baxter, L.L., Reduction in Cycling of the Boilers by

Using Large-Scale Energy Storage of Cryogenic Carbon Capture, AIChE National Meeting,

Salt Lake City, UT, Nov. 2015 (Chapter 6).

• Safdarnejad, S.M., Hedengren, J.D., Baxter, L.L., Dynamic Optimization of the Hybrid

System of a Baseline Power Generation Unit and Cryogenic Carbon Capture, Western States

Section of the Combustion Institute, Provo, UT, Oct. 2015 (Chapter 6).

• Safdarnejad, S.M., Hedengren, J.D., Baxter, L.L., Effect of Cryogenic Carbon Capture

(CCC) on Smart Power Grids, AIChE Spring Meeting, Austin, TX, Apr. 2015 (Chapter 6).
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• Safdarnejad, S.M., Hall, T., Hedengren, J.D., Baxter, L.L., Dynamic Optimization of Cryo-

genic Carbon Capture with Large-scale Adoption of Renewable Power, AIChE National

Meeting, Atlanta, GA, Nov. 2014 (Chapter 5).
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APPENDIX A. RIGOROUS MODEL FOR THE BATCH DISTILLATION COLUMN

Listing A.1: Binary Distillation Column Model in APMonitor Modeling Language
1 % Bi na ry Batch D i s t i l l a t i o n Column

2 % Component 1 = methano l

3 % Component 2 = e t h a n o l

4 Constants

5 n = 40 % s t a g e s

6 x0 = 0 . 5 9 % i n i t i a l c o m p o s i t i o n

7 % C o n s t a n t s f o r h e a t o f v a p o r i z a t i o n

8 A_m = 3 .2615 e7

9 B_m = −1.0407

10 C_m = 1 .8695

11 D_m = −0.60801

12 A_e = 6 .5831 e7

13 B_e = 1 .1905

14 C_e = −1.7666

15 D_e = 1 .0012

16 % C r i t i c a l t e m p e r a t u r e s (K)

17 Tc_m = 512 .5

18 Tc_e = 514

19 % D e n s i t y c o e f f i c i e n t s

20 rho_m_1 = 2 .3267

21 rho_m_2 = 0 .27073

22 rho_m_3 = 512 .05

23 rho_m_4 = 0 .24713

24 rho_e_1 = 1 .6288

25 rho_e_2 = 0 .27469

26 rho_e_3 = 514

27 rho_e_4 = 0 .23178

28 % Heat c a p a c i t y c o e f f i c i e n t s

29 cp_m_liq_1 = 2 .5604 E5

30 cp_m_liq_2 = −2.7414E3

31 cp_m_liq_3 = 1 .4777 E1

32 cp_m_liq_4 = −3.5078E−2

33 cp_m_liq_5 = 3 .2719E−5

34 cp_e_liq_1 = 1 .0264 E5

35 cp_e_liq_2 = −1.3963E2

36 cp_e_liq_3 = −3.0341E−2

37 cp_e_liq_4 = 2 .0386E−3

38 cp_e_liq_5 = 0

39 % S t a n d a r d h e a t s o f f o r m a t i o n ( J / kmol )

40 h_form_std_m = −2.391E8

41 h_form_std_e = −2.7698E8

42 % Vapor p r e s s u r e c o e f f i c i e n t s

43 vpm [ 1 ] = 82 .718

44 vpm [ 2 ] = −6904.5

45 vpm [ 3 ] = −8.8622
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46 vpm [ 4 ] = 7 .4664E−06

47 vpm [ 5 ] = 2

48 vpe [ 1 ] = 73 .304

49 vpe [ 2 ] = −7122.3

50 vpe [ 3 ] = −7.1424

51 vpe [ 4 ] = 2 .8853E−06

52 vpe [ 5 ] = 2

53 End Constants

54

55 Parameters

56 rr = 3 . 5 % r e f l u x r a t i o

57 hf = 0 . 8 % f r a c t i o n a l h e a t l o s s f r a c t i o n

58 vf = 0 . 4 5 % t r a y e f f i c i e n c y

59 tray_hol = 0 . 0 7 % t r a y ho ldup

60 condenser_hol = 0 .144 % c o n d e n s e r ho ldup

61 heat_rate = 36000 , > 0 % 36000 J / min = 600 W

62 gamma = 1 . 0 % a c t i v i t y c o e f f i c i e n t

63

64 Variables

65 x [ 1 : n ] = x0 , >= 0 , <= 1

66 y [ 2 : n ] = x0 , >= 0 , <= 1

67 L [ 1 : n−1] = 0 . 3 6 , > 0 % mol / min

68 V [ 2 : n ] = 0 . 7 2 , > 0 % mol / min

69 D = 0 . 3 6 , > 0 % mol / min

70 boil_hol = 28 , >0 % mol

71 Q_cond = 0

72 np = 0 , >= 0 % mol

73 xp = 0 . 9 9 , >= 0 , <= 1

74 T [ 1 : n ] = 320 % t r a y t e m p e r a t u r e

75 ystar [ 2 : n ] = x0 % t h e o r e t i c a l vapor c o m p o s i t i o n

76

77 Intermediates

78 % t r a y p r e s s u r e s

79 P [ 1 ] = 101325 * 0 . 8 6 % l o c a l a t m o s p h e r i c p r e s s u r e

80 P [ 2 : n ] = P [ 1 : n−1] + 101325/760 % p r e s s u r e drop

81 % pure component and m i x t u r e vapor p r e s s u r e ( Pa )

82 vp1 [ 1 : n ] = exp ( vpm [ 1 ] + vpm [ 2 ] / T [ 1 : n ]+vpm [ 3 ] * LOG ( T [ 1 : n ] ) +vpm [ 4 ] * ( T [ 1 : n ] ˆ vpm [ 5 ] ) )

83 vp2 [ 1 : n ] = exp ( vpe [ 1 ] + vpe [ 2 ] / T [ 1 : n ]+vpe [ 3 ] * LOG ( T [ 1 : n ] ) +vpe [ 4 ] * ( T [ 1 : n ] ˆ vpe [ 5 ] ) )

84 vp [ 1 : n ] = x [ 1 : n ] * vp1 [ 1 : n ] + (1−x [ 1 : n ] ) * vp2 [ 1 : n ]

85 % pure component and m i x u t r e d e n s i t y ( kmol / m3 or mol / L )

86 rho_meth [ 1 : n−1] = rho_m_1 / ( rho_m_2 ˆ(1+(1−T [ 1 : n−1]/ rho_m_3 ) ˆ rho_m_4 ) )

87 rho_etha [ 1 : n−1] = rho_e_1 / ( rho_e_2 ˆ(1+(1−T [ 1 : n−1]/ rho_e_3 ) ˆ rho_e_4 ) )

88 rho_mix [ 1 : n−1] = rho_meth [ 1 : n−1] * x [ 1 : n−1] + rho_etha [ 1 : n−1] * (1−x [ 1 : n−1])

89 % pure component h e a t o f v a p o r i z a t i o n ( J / mol )

90 Hvap_m [ 1 : n ] = A_m*(1−T [ 1 : n ] / Tc_m ) ˆ ( B_m+C_m *(T [ 1 : n ] / Tc_m ) +D_m *(T [ 1 : n ] / Tc_m ) ˆ 2 ) /1000

91 Hvap_e [ 1 : n ] = A_e*(1−T [ 1 : n ] / Tc_e ) ˆ ( B_e+C_e *(T [ 1 : n ] / Tc_e ) +D_e *(T [ 1 : n ] / Tc_e ) ˆ 2 ) /1000

92 % pure component l i q u i d e n t h a l p i e s ( J / mol )

93 h_liq_m [ 1 : n ] = ( cp_m_liq_1 * ( T [ 1 : n ] ) + cp_m_liq_2 * ( T [ 1 : n ] ) ˆ 2 / 2 + &

94 cp_m_liq_3 * ( T [ 1 : n ] ) ˆ 3 / 3 + cp_m_liq_4 * ( T [ 1 : n ] ) ˆ 4 / 4 + &

95 cp_m_liq_5 * ( T [ 1 : n ] ) ˆ 5 / 5 ) /1000

96 h_liq_e [ 1 : n ] = ( cp_e_liq_1 * ( T [ 1 : n ] ) + cp_e_liq_2 * ( T [ 1 : n ] ) ˆ 2 / 2 + &

97 cp_e_liq_3 * ( T [ 1 : n ] ) ˆ 3 / 3 + cp_e_liq_4 * ( T [ 1 : n ] ) ˆ 4 / 4 + &

98 cp_e_liq_5 * ( T [ 1 : n ] ) ˆ 5 / 5 ) /1000

99 % pure component vapor e n t h a l p i e s ( J / mol )

100 h_gas_m [ 2 : n ] = h_liq_m [ 2 : n ] + Hvap_m [ 2 : n ]

101 h_gas_e [ 1 : n ] = h_liq_e [ 1 : n ] + Hvap_e [ 1 : n ]

102 % t r a y vapor and l i q u i d e n t h a l p i e s ( J / mol )

103 h_gas [ 2 : n ] = y [ 2 : n ] * h_gas_m [ 2 : n ] + (1−y [ 2 : n ] ) *h_gas_e [ 2 : n ]

104 h_liq [ 1 : n ] = x [ 1 : n ] * h_liq_m [ 1 : n ] + (1−x [ 1 : n ] ) *h_liq_e [ 1 : n ]

105

106 Equations
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107 % t r a y b ubb l e p o i n t t e m p e r a t u r e

108 P [ 1 : n ] = vp [ 1 : n ]

109 % vapor l i q u i d e q u i l i b r i u m

110 ystar [ 2 : n ] * P [ 2 : n ] = gamma * x [ 2 : n ] * vp1 [ 2 : n ]

111 % non− i d e a l s e p a r a t i o n wi th t r a y e f f i c i e n c y

112 y [ n ] = ystar [ n ]

113 y [ 2 : n−1] = y [ 3 : n]−vf *(y [ 3 : n]−ystar [ 2 : n−1])

114 % r e f l u x r a t i o = L /D

115 L [ 1 ] = rr * D

116 % Condenser mole b a l a n c e ( me thano l )

117 condenser_hol * x [ 1 ] = − ( L [ 1 ] + D ) * x [ 1 ] + V [ 2 ] * y [ 2 ]

118 % Tray mole b a l a n c e ( me thano l )

119 tray_hol * $x [ 2 : n−1] = L [ 1 : n−2] * x [ 1 : n−2] − ( L [ 2 : n−1]) * x [ 2 : n−1] &

120 − V [ 2 : n−1] * y [ 2 : n−1] + y [ 3 : n ] * V [ 3 : n ]

121 % R e b o i l e r mole b a l a n c e ( me thano l )

122 boil_hol * $x [ n ] + $boil_hol * x [ n ] = L [n−1] * x [n−1] − V [ n ] * y [ n ]

123 % O v e r a l l c o n d e n s e r mole b a l a n c e

124 V [ 2 ] = D * ( rr+1)

125 % O v e r a l l t r a y mole b a l a n c e

126 0 = V [ 3 : n ] + L [ 1 : n−2] − V [ 2 : n−1] − L [ 2 : n−1]

127 % Energy b a l a n c e ( no dynamics )

128 0 = ( V [ 2 ] * ( h_gas [ 2 ] − h_liq [ 1 ] ) − Q_cond )

129 0 = V [ 3 : n ] * ( h_gas [ 3 : n ] − h_liq [ 2 : n−1]) − V [ 2 : n−1] * ( h_gas [ 2 : n−1] − h_liq [ 2 : n−1]) &

130 − L [ 1 : n−2] * ( h_liq [ 1 : n−2] − h_liq [ 2 : n−1])

131 0 = heat_rate * hf − V [ n ] * ( h_gas [ n]−h_liq [ n ] ) − L [n−1] * ( h_liq [n−1]−h_liq [ n ] )

132 % P r o d u c t i o n r a t e e q u a t i o n s

133 $boil_hol = −D

134 $np = D

135 xp * $np + np * $xp = x [ 1 ] * D

Listing A.2: Python Dynamic Estimation
1 from apm import *

2 s = ' h t t p : / / byu . a p m o n i t o r . com '

3 a = ' d i s t i l l l 1 n o r m '

4 apm (s , a , ' c l e a r a l l ' )

5 apm_load (s , a , ' d i s t i l l . apm ' )

6 csv_load (s , a , ' d a t a . c sv ' )

7 apm_option (s , a , ' n l c . imode ' , 5 )

8 apm_option (s , a , ' n l c . m a x i t e r ' , 1 0 0 )

9 apm_option (s , a , ' n l c . nodes ' , 2 )

10 apm_option (s , a , ' n l c . t i m e s h i f t ' , 0 )

11 apm_option (s , a , ' n l c . e v t y p e ' , 1 )

12 apm_info (s , a , 'FV ' , ' h f ' )

13 apm_info (s , a , 'FV ' , ' v f ' )

14 apm_info (s , a , 'FV ' , ' t r a y h o l ' )

15 apm_info (s , a , 'FV ' , ' c o n d e n s e r h o l ' )

16 apm_info (s , a , 'CV ' , ' x [ 1 ] ' )

17 apm_info (s , a , 'CV ' , ' np ' )

18 output = apm (s , a , ' s o l v e ' )

19 p r i n t ( output )

20 apm_option (s , a , ' h f . s t a t u s ' , 1 )

21 apm_option (s , a , ' v f . s t a t u s ' , 1 )

22 apm_option (s , a , ' t r a y h o l . s t a t u s ' , 1 )

23 apm_option (s , a , ' c o n d e n s e r h o l . s t a t u s ' , 1 )

24 apm_option (s , a , ' x [ 1 ] . f s t a t u s ' , 1 )

25 apm_option (s , a , ' np . f s t a t u s ' , 1 )

26 apm_option (s , a , ' x [ 1 ] . wsphi ' , 10000 )
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27 apm_option (s , a , ' x [ 1 ] . wsplo ' , 10000 )

28 apm_option (s , a , ' np . wsphi ' , 1 0 )

29 apm_option (s , a , ' np . wsplo ' , 1 0 )

30 apm_option (s , a , ' x [ 1 ] . meas gap ' ,1e−4)

31 apm_option (s , a , ' np . meas gap ' , 0 . 0 1 )

32 apm_option (s , a , ' h f . l ower ' , 0 . 0 0 1 ) ;

33 apm_option (s , a , ' h f . uppe r ' , 1 . 0 ) ;

34 apm_option (s , a , ' v f . l ower ' , 0 . 0 0 1 ) ;

35 apm_option (s , a , ' v f . uppe r ' , 0 . 6 ) ;

36 apm_option (s , a , ' t r a y h o l . l ower ' , 0 . 0 1 ) ;

37 apm_option (s , a , ' t r a y h o l . uppe r ' , 0 . 1 ) ;

38 apm_option (s , a , ' c o n d e n s e r h o l . l ower ' , 0 . 1 )

39 apm_option (s , a , ' c o n d e n s e r h o l . uppe r ' , 0 . 5 )

40 output = apm (s , a , ' s o l v e ' )

41 p r i n t ( output )

42 y = apm_sol (s , a )

43 p r i n t ( ' h f : ' + str ( y [ ' h f ' ] [ −1] ) )

44 p r i n t ( ' v f : ' + str ( y [ ' v f ' ] [ −1] ) )

45 p r i n t ( ' t r a y h o l : ' + str ( y [ ' t r a y h o l ' ] [ −1] ) )

46 p r i n t ( ' c o n d h o l : ' + str ( y [ ' c o n d e n s e r h o l ' ] [ −1] ) )

47 p r i n t ( ' np : ' + str ( y [ ' np ' ] [ −1] ) )

48 p r i n t ( ' xp : ' + str ( y [ ' xp ' ] [ −1] ) )

49

50 import matplotlib . pyplot as plt

51 import pandas as pd

52 data_file = pd . read_csv ( ' d a t a f o r p l o t t i n g . csv ' )

53

54 plt . f i g u r e ( 1 )

55 plt . s u b p l o t ( 3 , 1 , 1 )

56 plt . p l o t ( y [ ' t ime ' ] , y [ ' np ' ] , ' bx− ' , linewidth = 2 . 0 )

57 plt . p l o t ( data_file [ ' t ime ' ] , data_file [ ' np ' ] , ' r o ' )

58 plt . l e g e n d ( [ ' P r e d i c t e d ' , ' Measured ' ] )

59 plt . y l a b e l ( ' Moles ' )

60

61 ax = plt . s u b p l o t ( 3 , 1 , 2 )

62 plt . p l o t ( y [ ' t ime ' ] , y [ ' x [ 1 ] ' ] , ' bx− ' , linewidth = 2 . 0 )

63 plt . p l o t ( data_file [ ' t ime ' ] , data_file [ ' x [ 1 ] ' ] , ' r o ' )

64 plt . p l o t ( y [ ' t ime ' ] , y [ ' xp ' ] , ' k : ' , linewidth = 2 . 0 )

65 plt . l e g e n d ( [ ' P r e d i c t e d ' , ' Measured ' , ' Cumula t ive ' ] )

66 plt . y l a b e l ( ' Compos i t ion ' )

67 ax . set_ylim ( [ 0 . 6 , 1 . 0 5 ] )

68

69 plt . s u b p l o t ( 3 , 1 , 3 )

70 plt . p l o t ( y [ ' t ime ' ] , y [ ' x [ 1 ] ' ] , ' bx− ' , linewidth = 2 . 0 )

71 plt . p l o t ( y [ ' t ime ' ] , y [ ' x [ 2 ] ' ] , ' k : ' , linewidth = 2 . 0 )

72 plt . p l o t ( y [ ' t ime ' ] , y [ ' x [ 5 ] ' ] , ' r−− ' , linewidth = 2 . 0 )

73 plt . p l o t ( y [ ' t ime ' ] , y [ ' x [ 1 0 ] ' ] , 'm.− ' , linewidth = 2 . 0 )

74 plt . p l o t ( y [ ' t ime ' ] , y [ ' x [ 2 0 ] ' ] , ' y− ' , linewidth = 2 . 0 )

75 plt . p l o t ( y [ ' t ime ' ] , y [ ' x [ 3 0 ] ' ] , ' g−. ' , linewidth = 2 . 0 )

76 plt . p l o t ( y [ ' t ime ' ] , y [ ' x [ 4 0 ] ' ] , ' k− ' , linewidth = 2 . 0 )

77 plt . l e g e n d ( [ ' x1 ' , ' x2 ' , ' x5 ' , ' x10 ' , ' x20 ' , ' x30 ' , ' x40 ' ] )

78 plt . y l a b e l ( ' Compos i t ion ' )

79

80 plt . savefig ( ' r e s u l t s l 1 . png ' )

81 plt . show ( )
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